
If $k$ is the solution of the equation $\sqrt {2x + 1} - \sqrt {2x - 1} = 1\,\,\left( {x \geqslant \dfrac{1}{2}} \right)$ then $\sqrt {4{x^2} - 1} $ is equal to:
$
a) \,\dfrac{3}{4} \\
b) \,\dfrac{1}{2} \\
c) \,2\sqrt 2 \\
d) \,2 \\
$
Answer
591.9k+ views
Hint: We know the identity $(a - b)(a + b) = {a^2} - {b^2}$, apply this identity and square both the given equations and simplify it to get the desired answer.
Complete step-by-step answer:
So we are provided with the equation
$\sqrt {2x + 1} - \sqrt {2x - 1} = 1$
Now let squaring both side, we get
${(a - b)^2} = {a^2} + {b^2} - 2ab$
$
\Rightarrow {\left( {\sqrt {2x + 1} } \right)^2} + {\left( {\sqrt {2x - 1} } \right)^2} - 2\left( {\sqrt {2x + 1} } \right)\left( {\sqrt {2x - 1} } \right) = 1 \\
\Rightarrow 2x + 1 + 2x - 1 - 2\sqrt {4{x^2} - 1} = 1 \\
\Rightarrow 4x - 2\sqrt {4{x^2} - 1} = 1 \\
\Rightarrow 4x - 1 = 2\sqrt {4{x^2} - 1} \\
\Rightarrow \sqrt {4{x^2} - 1} = \dfrac{{4x - 1}}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \left( 2 \right) \\
$
Now let us rearrange the given equation.
$\sqrt {2x + 1} = 1 + \sqrt {2x - 1} $
We can write it like this, now squaring both side
$
{\sqrt {2x + 1} ^2} = {1^2} + {\sqrt {2x - 1} ^2} + 2\sqrt {2x - 1} \\
2x + 1 = 1 + 2x - 1 + 2\sqrt {2x - 1} \\
1 = 2\sqrt {2x - 1} \\
\sqrt {2x - 1} = \dfrac{1}{2} \\
$
We got $\sqrt {2x - 1} = \dfrac{1}{2}$
Now squaring both side, we will get
$
2x - 1 = \dfrac{1}{4} \\
2x = \dfrac{1}{4} + 1 \\
2x = \dfrac{5}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \dfrac{5}{8} \\
$
So finally we get the value of x i.e. $\dfrac{5}{8}$
Now we calculate that
$\sqrt {4{x^2} - 1} = \dfrac{{4x - 1}}{2}$now putting $x = \dfrac{5}{8}$in this we get,
$\sqrt {4{x^2} - 1} = \dfrac{{4 \times \dfrac{5}{8} - 1}}{2} = \dfrac{3}{4}$
So our answer is $\dfrac{3}{4}$
Note: Alternative method:
We got the value of $\sqrt {2x - 1} = \dfrac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \left( 1 \right)$
And also we are given that $\sqrt {2x + 1} - \sqrt {2x - 1} = 1$. So putting $\sqrt {2x - 1} = \dfrac{1}{2}$in the equation. We will get-
$
\sqrt {2x + 1} - \dfrac{1}{2} = 1 \\
\sqrt {2x + 1} = \dfrac{1}{2} + 1 \\
\sqrt {2x + 1} = \dfrac{3}{2}\,\,\,\,\,\,\,\,\,\, \to \left( 2 \right) \\
$
Multiplying (1) and (2) we get
$
\sqrt {2x + 1} \times \sqrt {2x - 1} = \dfrac{1}{2}\,\, \times \dfrac{3}{2}\,\, \\
\sqrt {4{x^2} + 1} = \dfrac{3}{4} \\
$
Hence our answer is $\dfrac{3}{4}$.
Complete step-by-step answer:
So we are provided with the equation
$\sqrt {2x + 1} - \sqrt {2x - 1} = 1$
Now let squaring both side, we get
${(a - b)^2} = {a^2} + {b^2} - 2ab$
$
\Rightarrow {\left( {\sqrt {2x + 1} } \right)^2} + {\left( {\sqrt {2x - 1} } \right)^2} - 2\left( {\sqrt {2x + 1} } \right)\left( {\sqrt {2x - 1} } \right) = 1 \\
\Rightarrow 2x + 1 + 2x - 1 - 2\sqrt {4{x^2} - 1} = 1 \\
\Rightarrow 4x - 2\sqrt {4{x^2} - 1} = 1 \\
\Rightarrow 4x - 1 = 2\sqrt {4{x^2} - 1} \\
\Rightarrow \sqrt {4{x^2} - 1} = \dfrac{{4x - 1}}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \left( 2 \right) \\
$
Now let us rearrange the given equation.
$\sqrt {2x + 1} = 1 + \sqrt {2x - 1} $
We can write it like this, now squaring both side
$
{\sqrt {2x + 1} ^2} = {1^2} + {\sqrt {2x - 1} ^2} + 2\sqrt {2x - 1} \\
2x + 1 = 1 + 2x - 1 + 2\sqrt {2x - 1} \\
1 = 2\sqrt {2x - 1} \\
\sqrt {2x - 1} = \dfrac{1}{2} \\
$
We got $\sqrt {2x - 1} = \dfrac{1}{2}$
Now squaring both side, we will get
$
2x - 1 = \dfrac{1}{4} \\
2x = \dfrac{1}{4} + 1 \\
2x = \dfrac{5}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \dfrac{5}{8} \\
$
So finally we get the value of x i.e. $\dfrac{5}{8}$
Now we calculate that
$\sqrt {4{x^2} - 1} = \dfrac{{4x - 1}}{2}$now putting $x = \dfrac{5}{8}$in this we get,
$\sqrt {4{x^2} - 1} = \dfrac{{4 \times \dfrac{5}{8} - 1}}{2} = \dfrac{3}{4}$
So our answer is $\dfrac{3}{4}$
Note: Alternative method:
We got the value of $\sqrt {2x - 1} = \dfrac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \left( 1 \right)$
And also we are given that $\sqrt {2x + 1} - \sqrt {2x - 1} = 1$. So putting $\sqrt {2x - 1} = \dfrac{1}{2}$in the equation. We will get-
$
\sqrt {2x + 1} - \dfrac{1}{2} = 1 \\
\sqrt {2x + 1} = \dfrac{1}{2} + 1 \\
\sqrt {2x + 1} = \dfrac{3}{2}\,\,\,\,\,\,\,\,\,\, \to \left( 2 \right) \\
$
Multiplying (1) and (2) we get
$
\sqrt {2x + 1} \times \sqrt {2x - 1} = \dfrac{1}{2}\,\, \times \dfrac{3}{2}\,\, \\
\sqrt {4{x^2} + 1} = \dfrac{3}{4} \\
$
Hence our answer is $\dfrac{3}{4}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

