
If it is given that\[y=cos\left[ log\left( cot\;x \right) \right]\], then find the first order derivative\[\dfrac{dy}{dx}\].
Answer
602.1k+ views
Hint: Apply the chain rule of differentiation that is given by\[\dfrac{df\left( u \right)}{dx}=\dfrac{df}{du}\cdot \dfrac{du}{dx}\]. Also, apply the formulas\[\dfrac{d\left( \ln \left( u \right) \right)}{du}=\dfrac{1}{u},\dfrac{d\left( \cos \left( u \right) \right)}{du}=-\sin \left( u \right),\dfrac{d\left( \cot \left( x \right) \right)}{dx}=-{{\csc }^{2}}\left( x \right)\].
Complete step-by-step solution -
In the question, we have to find the first order derivative\[\dfrac{dy}{dx}\] of the function\[y=cos\left[ log\left( cot\;x \right) \right]\].
Now, we can write the derivative as;
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \cos \left( \ln \left( \cot \left( x \right) \right) \right) \right)}{dx}\]
Here, we have to apply the chain rule that is given as \[\dfrac{df\left( u \right)}{dx}=\dfrac{df}{du}\cdot \dfrac{du}{dx}\]
Here, \[f=\cos \left( u \right),\;\;u=\ln \left( \cot \left( x \right) \right)\]
So, the derivative will now is as follows:
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \cos \left( \ln \left( \cot \left( x \right) \right) \right) \right)}{dx} \\
& \Rightarrow \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \cos \left( u \right) \right)}{du}\dfrac{d\left( \ln \left( \cot \left( x \right) \right) \right)}{dx} \\
\end{align}\]
Next, we have to apply the formulas \[\dfrac{d\left( \ln \left( u \right) \right)}{du}=\dfrac{1}{u},\dfrac{d\left( \cos \left( u \right) \right)}{du}=-\sin \left( u \right),\dfrac{d\left( \cot \left( x \right) \right)}{dx}=-{{\csc }^{2}}\left( x \right)\] and we will get:
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \cos \left( u \right) \right)}{du}\dfrac{d\left( \ln \left( \cot \left( x \right) \right) \right)}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\dfrac{d\left( \ln \left( v \right) \right)}{dv}\dfrac{d\left( \cot \left( x \right) \right)}{dx}\because v=\cot \left( x \right),\dfrac{df\left( u \right)}{dx}=\dfrac{df}{dv}\cdot \dfrac{dv}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ \dfrac{1}{v}\left( -{{\csc }^{2}}\left( x \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ \dfrac{1}{\cot \left( x \right)}\left( -{{\csc }^{2}}\left( x \right) \right) \right]\because v=\cot \left( x \right) \\
\end{align}\]
We will further simplify as follows:
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ \dfrac{\sin \left( x \right)}{-\cos \left( x \right){{\sin }^{2}}\left( x \right)} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \cot x=\dfrac{\cos \left( x \right)}{\sin \left( x \right)}\,\,\text{and}\,\,-{{\csc }^{2}}x=\dfrac{1}{-{{\sin }^{2}}\left( x \right)} \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ -\dfrac{1}{\cos \left( x \right)\sin \left( x \right)} \right] \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ -\dfrac{2}{2\cos \left( x \right)\sin \left( x \right)} \right] \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ -\dfrac{2}{\sin \left( 2x \right)} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because 2\cos \left( x \right)\sin \left( x \right)=\sin \left( 2x \right) \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ -\dfrac{2}{\sin \left( 2x \right)} \right] \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left( -2\csc \left( 2x \right) \right) \\
\end{align}\]
Next, substitute back\[u=\ln \left( \cot \left( x \right) \right)\], we get the final expression of differentiation, as follows:
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left( -2\csc \left( 2x \right) \right) \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( \ln \left( \cot \left( x \right) \right) \right) \right)\left( -2\csc \left( 2x \right) \right) \\
& \Rightarrow \dfrac{dy}{dx}=2\sin \left( \ln \left( \cot \left( x \right) \right) \right)\csc \left( 2x \right) \\
\end{align}\]
So the required derivative is \[\dfrac{dy}{dx}=2\sin \left( \ln \left( \cot \left( x \right) \right) \right)\csc \left( 2x \right)\].
Note: When finding the derivative of the log function, then it is important to bring the log function to the base if it is another base. Then apply the formula for the first order derivative of the log function which is given by \[\dfrac{d\left( \ln \left( u \right) \right)}{du}=\dfrac{1}{u}\]. In other words, we have to be careful if log function is given to the base e or to some other base. Hence, this formula is applicable if only we have the natural log function to the base e.
Complete step-by-step solution -
In the question, we have to find the first order derivative\[\dfrac{dy}{dx}\] of the function\[y=cos\left[ log\left( cot\;x \right) \right]\].
Now, we can write the derivative as;
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \cos \left( \ln \left( \cot \left( x \right) \right) \right) \right)}{dx}\]
Here, we have to apply the chain rule that is given as \[\dfrac{df\left( u \right)}{dx}=\dfrac{df}{du}\cdot \dfrac{du}{dx}\]
Here, \[f=\cos \left( u \right),\;\;u=\ln \left( \cot \left( x \right) \right)\]
So, the derivative will now is as follows:
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \cos \left( \ln \left( \cot \left( x \right) \right) \right) \right)}{dx} \\
& \Rightarrow \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \cos \left( u \right) \right)}{du}\dfrac{d\left( \ln \left( \cot \left( x \right) \right) \right)}{dx} \\
\end{align}\]
Next, we have to apply the formulas \[\dfrac{d\left( \ln \left( u \right) \right)}{du}=\dfrac{1}{u},\dfrac{d\left( \cos \left( u \right) \right)}{du}=-\sin \left( u \right),\dfrac{d\left( \cot \left( x \right) \right)}{dx}=-{{\csc }^{2}}\left( x \right)\] and we will get:
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \cos \left( u \right) \right)}{du}\dfrac{d\left( \ln \left( \cot \left( x \right) \right) \right)}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\dfrac{d\left( \ln \left( v \right) \right)}{dv}\dfrac{d\left( \cot \left( x \right) \right)}{dx}\because v=\cot \left( x \right),\dfrac{df\left( u \right)}{dx}=\dfrac{df}{dv}\cdot \dfrac{dv}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ \dfrac{1}{v}\left( -{{\csc }^{2}}\left( x \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ \dfrac{1}{\cot \left( x \right)}\left( -{{\csc }^{2}}\left( x \right) \right) \right]\because v=\cot \left( x \right) \\
\end{align}\]
We will further simplify as follows:
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ \dfrac{\sin \left( x \right)}{-\cos \left( x \right){{\sin }^{2}}\left( x \right)} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \cot x=\dfrac{\cos \left( x \right)}{\sin \left( x \right)}\,\,\text{and}\,\,-{{\csc }^{2}}x=\dfrac{1}{-{{\sin }^{2}}\left( x \right)} \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ -\dfrac{1}{\cos \left( x \right)\sin \left( x \right)} \right] \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ -\dfrac{2}{2\cos \left( x \right)\sin \left( x \right)} \right] \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ -\dfrac{2}{\sin \left( 2x \right)} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because 2\cos \left( x \right)\sin \left( x \right)=\sin \left( 2x \right) \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left[ -\dfrac{2}{\sin \left( 2x \right)} \right] \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left( -2\csc \left( 2x \right) \right) \\
\end{align}\]
Next, substitute back\[u=\ln \left( \cot \left( x \right) \right)\], we get the final expression of differentiation, as follows:
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( u \right) \right)\left( -2\csc \left( 2x \right) \right) \\
& \Rightarrow \dfrac{dy}{dx}=\left( -\sin \left( \ln \left( \cot \left( x \right) \right) \right) \right)\left( -2\csc \left( 2x \right) \right) \\
& \Rightarrow \dfrac{dy}{dx}=2\sin \left( \ln \left( \cot \left( x \right) \right) \right)\csc \left( 2x \right) \\
\end{align}\]
So the required derivative is \[\dfrac{dy}{dx}=2\sin \left( \ln \left( \cot \left( x \right) \right) \right)\csc \left( 2x \right)\].
Note: When finding the derivative of the log function, then it is important to bring the log function to the base if it is another base. Then apply the formula for the first order derivative of the log function which is given by \[\dfrac{d\left( \ln \left( u \right) \right)}{du}=\dfrac{1}{u}\]. In other words, we have to be careful if log function is given to the base e or to some other base. Hence, this formula is applicable if only we have the natural log function to the base e.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

