
If it is given that $x=a\left( \cos t+\log \tan \dfrac{t}{2} \right)$, $y=a\sin t$, find $\dfrac{{{d}^{2}}y}{d{{t}^{2}}}$ and $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$.
Answer
587.4k+ views
Hint: In order to solve the question, we have to calculate two things first one is $\dfrac{{{d}^{2}}y}{d{{t}^{2}}}$ which is easier just differentiate $y$ two times with respect $t$. The other one is $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ which involves little bit of complexity, first calculate $\dfrac{dy}{dt}$ and $\dfrac{dx}{dt}$ then divide to get $\dfrac{dy}{dx}$ and then differentiate with respect to $x$in order to get $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ .
Complete step by step answer:
It is given that $x=a\left( \cos t+\log \tan \dfrac{t}{2} \right)$ and $y=a\sin t$.
As $y=a\sin t$
$\Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( a\sin t \right)$
As we know that the derivative of $\sin x$ is $\cos x$ i.e. $\dfrac{d}{dx}\left( \sin x \right)=\cos x$
$\Rightarrow \dfrac{dy}{dt}=a\cos t....................(1)$
We also know that the derivative of $\cos x$ is $-\sin x$ i.e. $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{t}^{2}}}=\dfrac{d}{dt}\left( \dfrac{dy}{dt} \right)=\dfrac{d}{dt}\left( a\cos t \right)=-a\sin t$
Now, we have to calculate $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ . So first we have to calculate $\dfrac{dy}{dx}$ and then differentiate with respect to $x$ and get $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$.
As there is no any direct relation between $y$ and $x$ so we cannot directly calculate $\dfrac{dy}{dx}$. So, in order to calculate $\dfrac{dy}{dx}$ we have to first calculate $\dfrac{dy}{dt}$ and $\dfrac{dx}{dt}$ then divide to get $\dfrac{dy}{dx}$ .
Now, from equation (1), we get $\dfrac{dy}{dt}=a\cos t$
As, $x=a\left( \cos t+\log \tan \dfrac{t}{2} \right)$
$\Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\left( \cos t+\log \tan \dfrac{t}{2} \right) \right)$
$\Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\cos t \right)+\dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)..............(2)$
In order to get $\dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)$, we have to apply chain rule which state that the derivative of \[f\left( g\left( x \right) \right)\] is \[f'\left( g\left( x \right) \right)\cdot g'\left( x \right)\]. In other words, it helps us differentiate composite functions.
Now, $\dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)=\dfrac{d\left( a\log \tan \dfrac{t}{2} \right)}{d\left( \tan \dfrac{t}{2} \right)}\times \dfrac{d\left( \tan \dfrac{t}{2} \right)}{d\left( \dfrac{t}{2} \right)}\times \dfrac{d\left( \dfrac{t}{2} \right)}{dt}$
As we know that the derivative of $\log x$ is $\dfrac{1}{x}$ i.e. $\dfrac{d}{dx}(\log x)=\dfrac{1}{x}$.
Similarly, the derivative of $\tan x$ is ${{\sec }^{2}}x$ i.e. $\dfrac{d}{dx}(\tan x)={{\sec }^{2}}x$, substituting all those values in above equation, we get
$\Rightarrow \dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)=\dfrac{a}{\tan \dfrac{t}{2}}\times {{\sec }^{2}}\dfrac{t}{2}\times \dfrac{1}{2}$
Substituting $\sec \dfrac{t}{2}=\dfrac{1}{\cos \dfrac{t}{2}}$ and $\tan \dfrac{t}{2}=\dfrac{\sin \dfrac{t}{2}}{\cos \dfrac{t}{2}}$ in the above equation, we get
$\Rightarrow \dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)=\dfrac{a\cos \dfrac{t}{2}}{2\sin \dfrac{t}{2}{{\cos }^{2}}\dfrac{t}{2}}=\dfrac{a}{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}=\dfrac{a}{\sin t}$
Substituting the value of $\dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)$ in equation (2), we get
$\Rightarrow \dfrac{dx}{dt}=-a\sin t+\dfrac{a}{\sin t}......................(3)$
Dividing equation (1) with (3), we get
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{a\cos t}{-a\sin t+\dfrac{a}{\sin t}}...............(4)$
We have to differentiate it again with respect to $x$. We will use the quotient rule for the same. It is given by $\dfrac{d}{dx}\left[ \dfrac{f\left( x \right)}{g\left( x \right)} \right]=\dfrac{f'\left( x \right).g\left( x \right)-f\left( x \right).g'\left( x \right)}{{{\left[ g\left( x \right) \right]}^{2}}}$ . Now, using it, we get
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\dfrac{d}{dx}\left( a\cos t \right)\left( -a\sin t+\dfrac{a}{\sin t} \right)-a\cos t\dfrac{d}{dx}\left( -a\sin t+\dfrac{a}{\sin t} \right)}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-a\sin t\times \dfrac{dt}{dx}\left( -a\sin t+\dfrac{a}{\sin t} \right)-a\cos t\left( -a\cos t\dfrac{dt}{dx}-\dfrac{a}{{{\sin }^{2}}t}\times \cos t\dfrac{dt}{dx} \right)}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}$
We know that from equation (3), $\dfrac{dx}{dt}=-a\sin t+\dfrac{a}{\sin t}\Rightarrow \dfrac{dt}{dx}=\dfrac{1}{-a\sin t+\dfrac{a}{\sin t}}$
So putting the value of $\dfrac{dt}{dx}$ in above equation, we get
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-a\sin t\times \dfrac{1}{\left( -a\sin t+\dfrac{a}{\sin t} \right)}\left( -a\sin t+\dfrac{a}{\sin t} \right)+{{a}^{2}}{{\cos }^{2}}t\left( 1+\dfrac{1}{{{\sin }^{2}}t} \right)\times \dfrac{1}{\left( -a\sin t+\dfrac{a}{\sin t} \right)}}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-a\sin t+{{a}^{2}}{{\cos }^{2}}t\left( 1+\dfrac{1}{{{\sin }^{2}}t} \right)\times \dfrac{\sin t}{a{{\cos }^{2}}t}}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-a\sin t+\left( a\sin t+\dfrac{a}{{{\sin }^{2}}t} \right)}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\dfrac{a}{{{\sin }^{2}}t}}{{{a}^{2}}\dfrac{{{\left( 1-{{\sin }^{2}}t \right)}^{2}}}{{{\sin }^{2}}t}}=\dfrac{1}{a{{\cos }^{4}}t}=\dfrac{{{\sec }^{4}}t}{a}............(5)$
Hence, $\dfrac{{{d}^{2}}y}{d{{t}^{2}}}=-a\sin t$ and $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{\sec }^{4}}t}{a}$ is the correct answer.
Note: In these types of questions when we don’t have the direct relation between $y$ and $x$ then we first calculate $\dfrac{dy}{dt}$ and $\dfrac{dx}{dt}$ then divide to get $\dfrac{dy}{dx}$. Also, the main crux is to use the chain rule properly and substitute the value of derivatives in the expressions and get the desired value. There are a lot of computations and care must be taken not to make any silly mistakes.
Complete step by step answer:
It is given that $x=a\left( \cos t+\log \tan \dfrac{t}{2} \right)$ and $y=a\sin t$.
As $y=a\sin t$
$\Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( a\sin t \right)$
As we know that the derivative of $\sin x$ is $\cos x$ i.e. $\dfrac{d}{dx}\left( \sin x \right)=\cos x$
$\Rightarrow \dfrac{dy}{dt}=a\cos t....................(1)$
We also know that the derivative of $\cos x$ is $-\sin x$ i.e. $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{t}^{2}}}=\dfrac{d}{dt}\left( \dfrac{dy}{dt} \right)=\dfrac{d}{dt}\left( a\cos t \right)=-a\sin t$
Now, we have to calculate $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ . So first we have to calculate $\dfrac{dy}{dx}$ and then differentiate with respect to $x$ and get $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$.
As there is no any direct relation between $y$ and $x$ so we cannot directly calculate $\dfrac{dy}{dx}$. So, in order to calculate $\dfrac{dy}{dx}$ we have to first calculate $\dfrac{dy}{dt}$ and $\dfrac{dx}{dt}$ then divide to get $\dfrac{dy}{dx}$ .
Now, from equation (1), we get $\dfrac{dy}{dt}=a\cos t$
As, $x=a\left( \cos t+\log \tan \dfrac{t}{2} \right)$
$\Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\left( \cos t+\log \tan \dfrac{t}{2} \right) \right)$
$\Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\cos t \right)+\dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)..............(2)$
In order to get $\dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)$, we have to apply chain rule which state that the derivative of \[f\left( g\left( x \right) \right)\] is \[f'\left( g\left( x \right) \right)\cdot g'\left( x \right)\]. In other words, it helps us differentiate composite functions.
Now, $\dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)=\dfrac{d\left( a\log \tan \dfrac{t}{2} \right)}{d\left( \tan \dfrac{t}{2} \right)}\times \dfrac{d\left( \tan \dfrac{t}{2} \right)}{d\left( \dfrac{t}{2} \right)}\times \dfrac{d\left( \dfrac{t}{2} \right)}{dt}$
As we know that the derivative of $\log x$ is $\dfrac{1}{x}$ i.e. $\dfrac{d}{dx}(\log x)=\dfrac{1}{x}$.
Similarly, the derivative of $\tan x$ is ${{\sec }^{2}}x$ i.e. $\dfrac{d}{dx}(\tan x)={{\sec }^{2}}x$, substituting all those values in above equation, we get
$\Rightarrow \dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)=\dfrac{a}{\tan \dfrac{t}{2}}\times {{\sec }^{2}}\dfrac{t}{2}\times \dfrac{1}{2}$
Substituting $\sec \dfrac{t}{2}=\dfrac{1}{\cos \dfrac{t}{2}}$ and $\tan \dfrac{t}{2}=\dfrac{\sin \dfrac{t}{2}}{\cos \dfrac{t}{2}}$ in the above equation, we get
$\Rightarrow \dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)=\dfrac{a\cos \dfrac{t}{2}}{2\sin \dfrac{t}{2}{{\cos }^{2}}\dfrac{t}{2}}=\dfrac{a}{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}=\dfrac{a}{\sin t}$
Substituting the value of $\dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)$ in equation (2), we get
$\Rightarrow \dfrac{dx}{dt}=-a\sin t+\dfrac{a}{\sin t}......................(3)$
Dividing equation (1) with (3), we get
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{a\cos t}{-a\sin t+\dfrac{a}{\sin t}}...............(4)$
We have to differentiate it again with respect to $x$. We will use the quotient rule for the same. It is given by $\dfrac{d}{dx}\left[ \dfrac{f\left( x \right)}{g\left( x \right)} \right]=\dfrac{f'\left( x \right).g\left( x \right)-f\left( x \right).g'\left( x \right)}{{{\left[ g\left( x \right) \right]}^{2}}}$ . Now, using it, we get
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\dfrac{d}{dx}\left( a\cos t \right)\left( -a\sin t+\dfrac{a}{\sin t} \right)-a\cos t\dfrac{d}{dx}\left( -a\sin t+\dfrac{a}{\sin t} \right)}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-a\sin t\times \dfrac{dt}{dx}\left( -a\sin t+\dfrac{a}{\sin t} \right)-a\cos t\left( -a\cos t\dfrac{dt}{dx}-\dfrac{a}{{{\sin }^{2}}t}\times \cos t\dfrac{dt}{dx} \right)}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}$
We know that from equation (3), $\dfrac{dx}{dt}=-a\sin t+\dfrac{a}{\sin t}\Rightarrow \dfrac{dt}{dx}=\dfrac{1}{-a\sin t+\dfrac{a}{\sin t}}$
So putting the value of $\dfrac{dt}{dx}$ in above equation, we get
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-a\sin t\times \dfrac{1}{\left( -a\sin t+\dfrac{a}{\sin t} \right)}\left( -a\sin t+\dfrac{a}{\sin t} \right)+{{a}^{2}}{{\cos }^{2}}t\left( 1+\dfrac{1}{{{\sin }^{2}}t} \right)\times \dfrac{1}{\left( -a\sin t+\dfrac{a}{\sin t} \right)}}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-a\sin t+{{a}^{2}}{{\cos }^{2}}t\left( 1+\dfrac{1}{{{\sin }^{2}}t} \right)\times \dfrac{\sin t}{a{{\cos }^{2}}t}}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-a\sin t+\left( a\sin t+\dfrac{a}{{{\sin }^{2}}t} \right)}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}$
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\dfrac{a}{{{\sin }^{2}}t}}{{{a}^{2}}\dfrac{{{\left( 1-{{\sin }^{2}}t \right)}^{2}}}{{{\sin }^{2}}t}}=\dfrac{1}{a{{\cos }^{4}}t}=\dfrac{{{\sec }^{4}}t}{a}............(5)$
Hence, $\dfrac{{{d}^{2}}y}{d{{t}^{2}}}=-a\sin t$ and $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{\sec }^{4}}t}{a}$ is the correct answer.
Note: In these types of questions when we don’t have the direct relation between $y$ and $x$ then we first calculate $\dfrac{dy}{dt}$ and $\dfrac{dx}{dt}$ then divide to get $\dfrac{dy}{dx}$. Also, the main crux is to use the chain rule properly and substitute the value of derivatives in the expressions and get the desired value. There are a lot of computations and care must be taken not to make any silly mistakes.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

