
If it is given that the following equation is true: $\dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}+\sqrt{5}}=a+b\sqrt{10}$ , then find the value of $a$ and $b$ .
Answer
582.3k+ views
Hint: First, we will write down the left hand side of the given equation and rationalise the denominator, we will think of a number such that we get a real number in the denominator so we will be multiplying both the parts of the fraction that is the numerator and denominator with $\left( 3\sqrt{2}-\sqrt{5} \right)$, then we will compare the left hand side and the right hand side and we will get same expression in the left hand side with one real number and another one multiplied by $\sqrt{10}$ , thus we will get the value of a and b.
Complete step by step answer:
Now, we are given that: $\dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}+\sqrt{5}}=a+b\sqrt{10}$
So first we will take the left hand side: $\dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}+\sqrt{5}}$ , now we will rationalise the denominator by multiplying the numerator and the denominator by $\left( 3\sqrt{2}-\sqrt{5} \right)$ , therefore we will get:
$\dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}+\sqrt{5}}\times \dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}-\sqrt{5}}\Rightarrow \dfrac{{{\left( 3\sqrt{2}-\sqrt{5} \right)}^{2}}}{\left( 3\sqrt{2}+\sqrt{5} \right)\left( 3\sqrt{2}-\sqrt{5} \right)}$
Now, we will apply the identity: $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$ to the denominator, therefore:
$\Rightarrow \dfrac{{{\left( 3\sqrt{2}-\sqrt{5} \right)}^{2}}}{\left( 3\sqrt{2}+\sqrt{5} \right)\left( 3\sqrt{2}-\sqrt{5} \right)}\Rightarrow \dfrac{{{\left( 3\sqrt{2}-\sqrt{5} \right)}^{2}}}{{{\left( 3\sqrt{2} \right)}^{2}}-{{\left( \sqrt{5} \right)}^{2}}}\Rightarrow \dfrac{{{\left( 3\sqrt{2}-\sqrt{5} \right)}^{2}}}{\left( 18-5 \right)}\Rightarrow \dfrac{{{\left( 3\sqrt{2}-\sqrt{5} \right)}^{2}}}{13}$
Now, we will apply the identity: ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ to the numerator, therefore:
$\Rightarrow \dfrac{{{\left( 3\sqrt{2}-\sqrt{5} \right)}^{2}}}{13}\Rightarrow \dfrac{{{\left( 3\sqrt{2} \right)}^{2}}+{{\left( \sqrt{5} \right)}^{2}}-2\left( 3\sqrt{2} \right)\left( \sqrt{5} \right)}{13}\Rightarrow \dfrac{18+5-6\sqrt{10}}{13}\Rightarrow \dfrac{23-6\sqrt{10}}{13}$
Now, we will rewrite the given fraction: $\Rightarrow \dfrac{23-6\sqrt{10}}{13}=\dfrac{23}{13}-\dfrac{6\sqrt{10}}{13}=\dfrac{23}{13}-\dfrac{6}{13}\sqrt{10}$
Now, we will put this value of left hand side in the original question:
$\dfrac{23}{13}-\dfrac{6}{13}\sqrt{10}=a+b\sqrt{10}$
Now, we will compare the left hand side and the right hand side and then we will get the value of a and b as follows:
$a=\dfrac{23}{13}$ and $b=-\dfrac{6}{13}$
Note: Student must take a number carefully to rationalise the denominator, for example in: $\dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}+\sqrt{5}}$ , if we multiply the numerator and denominator by $3\sqrt{2}+\sqrt{5}$ , then we will get:
$\dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}+\sqrt{5}}\times \dfrac{3\sqrt{2}+\sqrt{5}}{3\sqrt{2}+\sqrt{5}}\Rightarrow \dfrac{{{\left( 3\sqrt{2} \right)}^{2}}-{{\left( \sqrt{5} \right)}^{2}}}{{{\left( 3\sqrt{2}+\sqrt{5} \right)}^{2}}}\Rightarrow \dfrac{18-5}{18+5+6\sqrt{10}}\Rightarrow \dfrac{13}{23+6\sqrt{10}}$
So, we will see that we have a rationalised numerator not the denominator and it would be complicated to get the value of a and b, therefore we should always choose a correct number to rationalise the denominator.
Complete step by step answer:
Now, we are given that: $\dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}+\sqrt{5}}=a+b\sqrt{10}$
So first we will take the left hand side: $\dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}+\sqrt{5}}$ , now we will rationalise the denominator by multiplying the numerator and the denominator by $\left( 3\sqrt{2}-\sqrt{5} \right)$ , therefore we will get:
$\dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}+\sqrt{5}}\times \dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}-\sqrt{5}}\Rightarrow \dfrac{{{\left( 3\sqrt{2}-\sqrt{5} \right)}^{2}}}{\left( 3\sqrt{2}+\sqrt{5} \right)\left( 3\sqrt{2}-\sqrt{5} \right)}$
Now, we will apply the identity: $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$ to the denominator, therefore:
$\Rightarrow \dfrac{{{\left( 3\sqrt{2}-\sqrt{5} \right)}^{2}}}{\left( 3\sqrt{2}+\sqrt{5} \right)\left( 3\sqrt{2}-\sqrt{5} \right)}\Rightarrow \dfrac{{{\left( 3\sqrt{2}-\sqrt{5} \right)}^{2}}}{{{\left( 3\sqrt{2} \right)}^{2}}-{{\left( \sqrt{5} \right)}^{2}}}\Rightarrow \dfrac{{{\left( 3\sqrt{2}-\sqrt{5} \right)}^{2}}}{\left( 18-5 \right)}\Rightarrow \dfrac{{{\left( 3\sqrt{2}-\sqrt{5} \right)}^{2}}}{13}$
Now, we will apply the identity: ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ to the numerator, therefore:
$\Rightarrow \dfrac{{{\left( 3\sqrt{2}-\sqrt{5} \right)}^{2}}}{13}\Rightarrow \dfrac{{{\left( 3\sqrt{2} \right)}^{2}}+{{\left( \sqrt{5} \right)}^{2}}-2\left( 3\sqrt{2} \right)\left( \sqrt{5} \right)}{13}\Rightarrow \dfrac{18+5-6\sqrt{10}}{13}\Rightarrow \dfrac{23-6\sqrt{10}}{13}$
Now, we will rewrite the given fraction: $\Rightarrow \dfrac{23-6\sqrt{10}}{13}=\dfrac{23}{13}-\dfrac{6\sqrt{10}}{13}=\dfrac{23}{13}-\dfrac{6}{13}\sqrt{10}$
Now, we will put this value of left hand side in the original question:
$\dfrac{23}{13}-\dfrac{6}{13}\sqrt{10}=a+b\sqrt{10}$
Now, we will compare the left hand side and the right hand side and then we will get the value of a and b as follows:
$a=\dfrac{23}{13}$ and $b=-\dfrac{6}{13}$
Note: Student must take a number carefully to rationalise the denominator, for example in: $\dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}+\sqrt{5}}$ , if we multiply the numerator and denominator by $3\sqrt{2}+\sqrt{5}$ , then we will get:
$\dfrac{3\sqrt{2}-\sqrt{5}}{3\sqrt{2}+\sqrt{5}}\times \dfrac{3\sqrt{2}+\sqrt{5}}{3\sqrt{2}+\sqrt{5}}\Rightarrow \dfrac{{{\left( 3\sqrt{2} \right)}^{2}}-{{\left( \sqrt{5} \right)}^{2}}}{{{\left( 3\sqrt{2}+\sqrt{5} \right)}^{2}}}\Rightarrow \dfrac{18-5}{18+5+6\sqrt{10}}\Rightarrow \dfrac{13}{23+6\sqrt{10}}$
So, we will see that we have a rationalised numerator not the denominator and it would be complicated to get the value of a and b, therefore we should always choose a correct number to rationalise the denominator.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE


