
If λ is an eigenvalue of A, then corresponding eigenvalue of ${{P}^{-n}}A{{P}^{n}}$ (P is a square matrix with same order as A) is
(a) ${{\lambda }^{n}}$
(b) 1
(c) ${{\lambda }^{-n}}$
(d) $\lambda $
Answer
612.6k+ views
Hint:For solving this problem, first let the matrix ${{P}^{-1}}AP$ be a matrix B. For obtaining the eigenvalues, we apply the formula: $B-\lambda $. By rearranging the terms and taking the determinant of both sides we obtain the eigenvalue to be the same as that of matrix A.
Complete step-by-step answer:
According to the problem statement, we are given a matrix A. The eigenvalue corresponding to the matrix A is \[\lambda \]. We are required to find the even value of the matrix ${{P}^{-n}}A{{P}^{n}}$. To evaluate this, first we tried to find the eigenvalue of the matrix \[{{P}^{-1}}A{{P}^{1}}\]. Let the matrix \[{{P}^{-1}}A{{P}^{1}}\] be another matrix B of same order.
Now, subtracting the matrix B with the product of the identity matrix with eigenvalue of matrix A. This can be expressed as:
$B-\lambda I={{P}^{-1}}AP-\lambda I$
Since, the identity matrix can be rewritten as a product of inverse and actual matrix. So, on further rearrangement, we get
$\begin{align}
& B-\lambda I={{P}^{-1}}AP-{{P}^{-1}}\lambda IP \\
& B-\lambda I={{P}^{-1}}\left( A-\lambda I \right)P \\
\end{align}$
Now, taking the magnitude of both sides to obtain the characteristic polynomial:
$\left| B-\lambda I \right|=\left| {{P}^{-1}} \right|\left| A-\lambda I \right|\left| P \right|$
Since, the determinant of a value can be shifted, so we get
$\begin{align}
& \left| B-\lambda I \right|=\left| {{P}^{-1}} \right|\left| P \right|\left| A-\lambda I \right| \\
& \left| B-\lambda I \right|=\left| {{P}^{-1}}P \right|\left| A-\lambda I \right|=\left| A-\lambda I \right|\left| I \right| \\
& \left| B-\lambda I \right|=\left| A-\lambda I \right| \\
\end{align}$
Thus, the two matrices A and B have the same characteristic determinants and hence the same characteristic equations and the same characteristic roots. Now, the required thing is
${{B}^{n}}={{P}^{-n}}A{{P}^{n}}$
Similarly, using the above simplification, we get
$\begin{align}
& \left| {{B}^{n}}-\lambda I \right|=\left| {{P}^{-n}} \right|\left| A-\lambda I \right|\left| {{P}^{n}} \right| \\
& \left| {{B}^{n}}-\lambda I \right|=\left| {{P}^{-n}} \right|\left| {{P}^{n}} \right|\left| A-\lambda I \right| \\
& \left| {{B}^{n}}-\lambda I \right|=\left| {{P}^{-n}}{{P}^{n}} \right|\left| A-\lambda I \right|=\left| A-\lambda I \right|\left| I \right| \\
& \left| {{B}^{n}}-\lambda I \right|=\left| A-\lambda I \right| \\
\end{align}$
Hence, the eigenvalue is $\lambda $.
Therefore, option (d) is correct.
Note: Another way of solving this problem can be:
$AX=\lambda X$
Multiply both the sides with the inverse of P, we get ${{P}^{-1}}AX=\lambda {{P}^{-1}}X$. Now, operating this equation by pre-multiplying ${{P}^{-1}}P$ and some other rearrangements, we obtain
$\Rightarrow \left( {{P}^{-1}}AP \right)\left( {{P}^{-1}}X \right)=\lambda \left( {{P}^{-1}}X \right)$. So, on comparing both sides, we get the value of ${{P}^{-1}}AP$ is $\lambda $.
Complete step-by-step answer:
According to the problem statement, we are given a matrix A. The eigenvalue corresponding to the matrix A is \[\lambda \]. We are required to find the even value of the matrix ${{P}^{-n}}A{{P}^{n}}$. To evaluate this, first we tried to find the eigenvalue of the matrix \[{{P}^{-1}}A{{P}^{1}}\]. Let the matrix \[{{P}^{-1}}A{{P}^{1}}\] be another matrix B of same order.
Now, subtracting the matrix B with the product of the identity matrix with eigenvalue of matrix A. This can be expressed as:
$B-\lambda I={{P}^{-1}}AP-\lambda I$
Since, the identity matrix can be rewritten as a product of inverse and actual matrix. So, on further rearrangement, we get
$\begin{align}
& B-\lambda I={{P}^{-1}}AP-{{P}^{-1}}\lambda IP \\
& B-\lambda I={{P}^{-1}}\left( A-\lambda I \right)P \\
\end{align}$
Now, taking the magnitude of both sides to obtain the characteristic polynomial:
$\left| B-\lambda I \right|=\left| {{P}^{-1}} \right|\left| A-\lambda I \right|\left| P \right|$
Since, the determinant of a value can be shifted, so we get
$\begin{align}
& \left| B-\lambda I \right|=\left| {{P}^{-1}} \right|\left| P \right|\left| A-\lambda I \right| \\
& \left| B-\lambda I \right|=\left| {{P}^{-1}}P \right|\left| A-\lambda I \right|=\left| A-\lambda I \right|\left| I \right| \\
& \left| B-\lambda I \right|=\left| A-\lambda I \right| \\
\end{align}$
Thus, the two matrices A and B have the same characteristic determinants and hence the same characteristic equations and the same characteristic roots. Now, the required thing is
${{B}^{n}}={{P}^{-n}}A{{P}^{n}}$
Similarly, using the above simplification, we get
$\begin{align}
& \left| {{B}^{n}}-\lambda I \right|=\left| {{P}^{-n}} \right|\left| A-\lambda I \right|\left| {{P}^{n}} \right| \\
& \left| {{B}^{n}}-\lambda I \right|=\left| {{P}^{-n}} \right|\left| {{P}^{n}} \right|\left| A-\lambda I \right| \\
& \left| {{B}^{n}}-\lambda I \right|=\left| {{P}^{-n}}{{P}^{n}} \right|\left| A-\lambda I \right|=\left| A-\lambda I \right|\left| I \right| \\
& \left| {{B}^{n}}-\lambda I \right|=\left| A-\lambda I \right| \\
\end{align}$
Hence, the eigenvalue is $\lambda $.
Therefore, option (d) is correct.
Note: Another way of solving this problem can be:
$AX=\lambda X$
Multiply both the sides with the inverse of P, we get ${{P}^{-1}}AX=\lambda {{P}^{-1}}X$. Now, operating this equation by pre-multiplying ${{P}^{-1}}P$ and some other rearrangements, we obtain
$\Rightarrow \left( {{P}^{-1}}AP \right)\left( {{P}^{-1}}X \right)=\lambda \left( {{P}^{-1}}X \right)$. So, on comparing both sides, we get the value of ${{P}^{-1}}AP$ is $\lambda $.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

