
If \[\int\limits_{0}^{50\pi }{\sqrt{1-\cos 2x}dx}\], then the value of \[\lambda \]is
A.$50\sqrt{2}$
B. 100
C. 0
D. None of these
Answer
591.3k+ views
Hint: Replace \[\left( 1-\cos 2x \right)\] by using the identity $''\cos 2x=1-2{{\sin }^{2}}x''$ in I then we use the formula that $''\int\limits_{0}^{nT}{f\left( x \right)dx=n\times \int\limits_{0}^{T}{f\left( x \right)dx''}}$ for further integrating. Where ‘T’ is the period of $f\left( x \right)$. Draw the graph of $y=\left| \sin x \right|$ to get the fundamental period of $\left| \sin x \right|$.
Complete step-by-step answer:
$I=\int\limits_{0}^{50\pi }{\sqrt{1-\cos x}dx}$
We know,
$\begin{align}
& \cos 2x=1-2{{\sin }^{2}}x \\
& \Rightarrow 2{{\sin }^{2}}x=1-\cos 2x \\
\end{align}$
Replacing $\left( 1-\cos 2x \right)$ with $2{{\sin }^{2}}x$ in I, we will get,
$\begin{align}
& I=\int\limits_{0}^{50\pi }{\sqrt{2{{\sin }^{2}}x}dx} \\
& \Rightarrow I=\int\limits_{0}^{50\pi }{\sqrt{2}\left| \sin x \right|dx} \\
\end{align}$
We know that $\int{cf\left( x \right)dx=c\int{f\left( x \right)dx}}$ if ‘c’ is any constant.
Here$'\sqrt{2}'$ is constant, so,
$I=\sqrt{2}\int\limits_{0}^{50\pi }{\left| \sin x \right|dx}$
Graph of $y=\left| \sin x \right|$
From the graph above, we can see that $y=\left| \sin x \right|$ is a periodic function with period $\pi $.
We know that,
$\int\limits_{0}^{nT}{f\left( x \right)dx=n\times \int\limits_{0}^{T}{f\left( x \right)dx}}$
Where T is the fundamental period of $f\left( x \right)$.
$\Rightarrow \int\limits_{0}^{50\pi }{\left| \sin x \right|dx}=50\times \int\limits_{0}^{\pi }{\left| \sin x \right|dx}$
Graph of $y=\sin x$
In $x\in \left[ 0,\pi \right],\sin x$ is positive. So, $\left| \sin x \right|=\sin x$.
\[\begin{align}
& \Rightarrow \int\limits_{0}^{50\pi }{\left| \sin x \right|dx}=50\times \int\limits_{0}^{\pi }{\left| \sin x \right|dx} \\
& =50\times \int\limits_{0}^{\pi }{\left( \sin x \right)dx} \\
& \int{\sin xdx=-\cos x} \\
& \Rightarrow \int\limits_{0}^{50\pi }{\left| \sin x \right|dx}=50\times \left[ -\cos x \right]_{0}^{\pi } \\
& =50\times \left[ -\cos \pi -\left( -\cos 0 \right) \right] \\
& =50\times \left[ -\cos \pi +\cos 0 \right]\ \ \ \ \left[ As\ \cos \pi =-1\ and\ \cos 0=1 \right] \\
& =50\times \left[ -\left( -1 \right)+1 \right] \\
& =50\times \left( 2 \right) \\
& =100 \\
& I=\sqrt{2}\int\limits_{0}^{50\pi }{\left| \sin x \right|dx} \\
& \Rightarrow I=\sqrt{2}\left( 100 \right) \\
& \Rightarrow I=100\sqrt{2} \\
\end{align}\]
Hence, $I=\int\limits_{0}^{50\pi }{\sqrt{1-\cos x}dx}=100\sqrt{2}$ and option (D) is the correct answer.
Note: Students can make mistakes by writing $\sqrt{2{{\sin }^{2}}x}=\sqrt{2}\sin x$ and not considering the modulus sign. But $\sqrt{2{{\sin }^{2}}x}=\sqrt{2}\left| \sin x \right|$ and fundamental period of $\sin x$ is $2\pi $while fundamental period of $\left| \sin x \right|$ will be $\pi $and the answer will be different.
Complete step-by-step answer:
$I=\int\limits_{0}^{50\pi }{\sqrt{1-\cos x}dx}$
We know,
$\begin{align}
& \cos 2x=1-2{{\sin }^{2}}x \\
& \Rightarrow 2{{\sin }^{2}}x=1-\cos 2x \\
\end{align}$
Replacing $\left( 1-\cos 2x \right)$ with $2{{\sin }^{2}}x$ in I, we will get,
$\begin{align}
& I=\int\limits_{0}^{50\pi }{\sqrt{2{{\sin }^{2}}x}dx} \\
& \Rightarrow I=\int\limits_{0}^{50\pi }{\sqrt{2}\left| \sin x \right|dx} \\
\end{align}$
We know that $\int{cf\left( x \right)dx=c\int{f\left( x \right)dx}}$ if ‘c’ is any constant.
Here$'\sqrt{2}'$ is constant, so,
$I=\sqrt{2}\int\limits_{0}^{50\pi }{\left| \sin x \right|dx}$
Graph of $y=\left| \sin x \right|$
From the graph above, we can see that $y=\left| \sin x \right|$ is a periodic function with period $\pi $.
We know that,
$\int\limits_{0}^{nT}{f\left( x \right)dx=n\times \int\limits_{0}^{T}{f\left( x \right)dx}}$
Where T is the fundamental period of $f\left( x \right)$.
$\Rightarrow \int\limits_{0}^{50\pi }{\left| \sin x \right|dx}=50\times \int\limits_{0}^{\pi }{\left| \sin x \right|dx}$
Graph of $y=\sin x$
In $x\in \left[ 0,\pi \right],\sin x$ is positive. So, $\left| \sin x \right|=\sin x$.
\[\begin{align}
& \Rightarrow \int\limits_{0}^{50\pi }{\left| \sin x \right|dx}=50\times \int\limits_{0}^{\pi }{\left| \sin x \right|dx} \\
& =50\times \int\limits_{0}^{\pi }{\left( \sin x \right)dx} \\
& \int{\sin xdx=-\cos x} \\
& \Rightarrow \int\limits_{0}^{50\pi }{\left| \sin x \right|dx}=50\times \left[ -\cos x \right]_{0}^{\pi } \\
& =50\times \left[ -\cos \pi -\left( -\cos 0 \right) \right] \\
& =50\times \left[ -\cos \pi +\cos 0 \right]\ \ \ \ \left[ As\ \cos \pi =-1\ and\ \cos 0=1 \right] \\
& =50\times \left[ -\left( -1 \right)+1 \right] \\
& =50\times \left( 2 \right) \\
& =100 \\
& I=\sqrt{2}\int\limits_{0}^{50\pi }{\left| \sin x \right|dx} \\
& \Rightarrow I=\sqrt{2}\left( 100 \right) \\
& \Rightarrow I=100\sqrt{2} \\
\end{align}\]
Hence, $I=\int\limits_{0}^{50\pi }{\sqrt{1-\cos x}dx}=100\sqrt{2}$ and option (D) is the correct answer.
Note: Students can make mistakes by writing $\sqrt{2{{\sin }^{2}}x}=\sqrt{2}\sin x$ and not considering the modulus sign. But $\sqrt{2{{\sin }^{2}}x}=\sqrt{2}\left| \sin x \right|$ and fundamental period of $\sin x$ is $2\pi $while fundamental period of $\left| \sin x \right|$ will be $\pi $and the answer will be different.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

