
If \[\int\limits_{0}^{50\pi }{\sqrt{1-\cos 2x}dx}\], then the value of \[\lambda \]is
A.$50\sqrt{2}$
B. 100
C. 0
D. None of these
Answer
607.8k+ views
Hint: Replace \[\left( 1-\cos 2x \right)\] by using the identity $''\cos 2x=1-2{{\sin }^{2}}x''$ in I then we use the formula that $''\int\limits_{0}^{nT}{f\left( x \right)dx=n\times \int\limits_{0}^{T}{f\left( x \right)dx''}}$ for further integrating. Where ‘T’ is the period of $f\left( x \right)$. Draw the graph of $y=\left| \sin x \right|$ to get the fundamental period of $\left| \sin x \right|$.
Complete step-by-step answer:
$I=\int\limits_{0}^{50\pi }{\sqrt{1-\cos x}dx}$
We know,
$\begin{align}
& \cos 2x=1-2{{\sin }^{2}}x \\
& \Rightarrow 2{{\sin }^{2}}x=1-\cos 2x \\
\end{align}$
Replacing $\left( 1-\cos 2x \right)$ with $2{{\sin }^{2}}x$ in I, we will get,
$\begin{align}
& I=\int\limits_{0}^{50\pi }{\sqrt{2{{\sin }^{2}}x}dx} \\
& \Rightarrow I=\int\limits_{0}^{50\pi }{\sqrt{2}\left| \sin x \right|dx} \\
\end{align}$
We know that $\int{cf\left( x \right)dx=c\int{f\left( x \right)dx}}$ if ‘c’ is any constant.
Here$'\sqrt{2}'$ is constant, so,
$I=\sqrt{2}\int\limits_{0}^{50\pi }{\left| \sin x \right|dx}$
Graph of $y=\left| \sin x \right|$
From the graph above, we can see that $y=\left| \sin x \right|$ is a periodic function with period $\pi $.
We know that,
$\int\limits_{0}^{nT}{f\left( x \right)dx=n\times \int\limits_{0}^{T}{f\left( x \right)dx}}$
Where T is the fundamental period of $f\left( x \right)$.
$\Rightarrow \int\limits_{0}^{50\pi }{\left| \sin x \right|dx}=50\times \int\limits_{0}^{\pi }{\left| \sin x \right|dx}$
Graph of $y=\sin x$
In $x\in \left[ 0,\pi \right],\sin x$ is positive. So, $\left| \sin x \right|=\sin x$.
\[\begin{align}
& \Rightarrow \int\limits_{0}^{50\pi }{\left| \sin x \right|dx}=50\times \int\limits_{0}^{\pi }{\left| \sin x \right|dx} \\
& =50\times \int\limits_{0}^{\pi }{\left( \sin x \right)dx} \\
& \int{\sin xdx=-\cos x} \\
& \Rightarrow \int\limits_{0}^{50\pi }{\left| \sin x \right|dx}=50\times \left[ -\cos x \right]_{0}^{\pi } \\
& =50\times \left[ -\cos \pi -\left( -\cos 0 \right) \right] \\
& =50\times \left[ -\cos \pi +\cos 0 \right]\ \ \ \ \left[ As\ \cos \pi =-1\ and\ \cos 0=1 \right] \\
& =50\times \left[ -\left( -1 \right)+1 \right] \\
& =50\times \left( 2 \right) \\
& =100 \\
& I=\sqrt{2}\int\limits_{0}^{50\pi }{\left| \sin x \right|dx} \\
& \Rightarrow I=\sqrt{2}\left( 100 \right) \\
& \Rightarrow I=100\sqrt{2} \\
\end{align}\]
Hence, $I=\int\limits_{0}^{50\pi }{\sqrt{1-\cos x}dx}=100\sqrt{2}$ and option (D) is the correct answer.
Note: Students can make mistakes by writing $\sqrt{2{{\sin }^{2}}x}=\sqrt{2}\sin x$ and not considering the modulus sign. But $\sqrt{2{{\sin }^{2}}x}=\sqrt{2}\left| \sin x \right|$ and fundamental period of $\sin x$ is $2\pi $while fundamental period of $\left| \sin x \right|$ will be $\pi $and the answer will be different.
Complete step-by-step answer:
$I=\int\limits_{0}^{50\pi }{\sqrt{1-\cos x}dx}$
We know,
$\begin{align}
& \cos 2x=1-2{{\sin }^{2}}x \\
& \Rightarrow 2{{\sin }^{2}}x=1-\cos 2x \\
\end{align}$
Replacing $\left( 1-\cos 2x \right)$ with $2{{\sin }^{2}}x$ in I, we will get,
$\begin{align}
& I=\int\limits_{0}^{50\pi }{\sqrt{2{{\sin }^{2}}x}dx} \\
& \Rightarrow I=\int\limits_{0}^{50\pi }{\sqrt{2}\left| \sin x \right|dx} \\
\end{align}$
We know that $\int{cf\left( x \right)dx=c\int{f\left( x \right)dx}}$ if ‘c’ is any constant.
Here$'\sqrt{2}'$ is constant, so,
$I=\sqrt{2}\int\limits_{0}^{50\pi }{\left| \sin x \right|dx}$
Graph of $y=\left| \sin x \right|$
From the graph above, we can see that $y=\left| \sin x \right|$ is a periodic function with period $\pi $.
We know that,
$\int\limits_{0}^{nT}{f\left( x \right)dx=n\times \int\limits_{0}^{T}{f\left( x \right)dx}}$
Where T is the fundamental period of $f\left( x \right)$.
$\Rightarrow \int\limits_{0}^{50\pi }{\left| \sin x \right|dx}=50\times \int\limits_{0}^{\pi }{\left| \sin x \right|dx}$
Graph of $y=\sin x$
In $x\in \left[ 0,\pi \right],\sin x$ is positive. So, $\left| \sin x \right|=\sin x$.
\[\begin{align}
& \Rightarrow \int\limits_{0}^{50\pi }{\left| \sin x \right|dx}=50\times \int\limits_{0}^{\pi }{\left| \sin x \right|dx} \\
& =50\times \int\limits_{0}^{\pi }{\left( \sin x \right)dx} \\
& \int{\sin xdx=-\cos x} \\
& \Rightarrow \int\limits_{0}^{50\pi }{\left| \sin x \right|dx}=50\times \left[ -\cos x \right]_{0}^{\pi } \\
& =50\times \left[ -\cos \pi -\left( -\cos 0 \right) \right] \\
& =50\times \left[ -\cos \pi +\cos 0 \right]\ \ \ \ \left[ As\ \cos \pi =-1\ and\ \cos 0=1 \right] \\
& =50\times \left[ -\left( -1 \right)+1 \right] \\
& =50\times \left( 2 \right) \\
& =100 \\
& I=\sqrt{2}\int\limits_{0}^{50\pi }{\left| \sin x \right|dx} \\
& \Rightarrow I=\sqrt{2}\left( 100 \right) \\
& \Rightarrow I=100\sqrt{2} \\
\end{align}\]
Hence, $I=\int\limits_{0}^{50\pi }{\sqrt{1-\cos x}dx}=100\sqrt{2}$ and option (D) is the correct answer.
Note: Students can make mistakes by writing $\sqrt{2{{\sin }^{2}}x}=\sqrt{2}\sin x$ and not considering the modulus sign. But $\sqrt{2{{\sin }^{2}}x}=\sqrt{2}\left| \sin x \right|$ and fundamental period of $\sin x$ is $2\pi $while fundamental period of $\left| \sin x \right|$ will be $\pi $and the answer will be different.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

