
If $ \int {\dfrac{{\tan x}}{{1 + \tan x + {{\tan }^2}x}}} dx = x - \dfrac{K}{{\sqrt A }}{\tan ^{ - 1}}\left( {\dfrac{{K\tan x + 1}}{{\sqrt A }}} \right) + C $ , (C is a constant of integration). Find the ordered pair $ \left( {K,A} \right) $
(A) $ \left( {2,3} \right) $
(B) $ \left( {2,1} \right) $
(C) $ \left( { - 2,1} \right) $
(D) $ \left( { - 2,3} \right) $
Answer
564.6k+ views
Hint: Take the integral from the left side of the given equation and solve it. Add and subtract $ \left( {1 + {{\tan }^2}x} \right) $ from the numerator and then separate the integral into two parts. Split the numerator as: $ \left( {\tan x + 1 + {{\tan }^2}x} \right) - \left( {1 + {{\tan }^2}x} \right) $ . By this way, the first integral will become $ 1dx $ and for the second integral use substitution $ \tan x = m $ and solve it further. After solving, compare the coefficients with the right side of the given equation.
Complete step-by-step solution:
Here we need to solve the integral on the left side of the given equation and then compare the solution with the right side of the equation. And find the values of the coefficients in the right side.
Let’s take the right side and try to evaluate the integral.
By adding and subtracting the term $ \left( {1 + {{\tan }^2}x} \right) $ in the numerator, we get:
$ \Rightarrow \int {\dfrac{{\tan x}}{{1 + \tan x + {{\tan }^2}x}}} dx = \int {\dfrac{{\tan x + 1 + {{\tan }^2}x - \left( {1 + {{\tan }^2}x} \right)}}{{1 + \tan x + {{\tan }^2}x}}} dx $
Now this will let us separate this one integral into two parts and solve them separately
$ \Rightarrow \int {\dfrac{{\tan x + 1 + {{\tan }^2}x - \left( {1 + {{\tan }^2}x} \right)}}{{1 + \tan x + {{\tan }^2}x}}} dx = \int {\dfrac{{\tan x + 1 + {{\tan }^2}x}}{{1 + \tan x + {{\tan }^2}x}}} dx - \int {\dfrac{{\left( {1 + {{\tan }^2}x} \right)}}{{1 + \tan x + {{\tan }^2}x}}} dx $
We can see that the first integral becomes $ \int {1dx} $ and for the second one we can use the trigonometric identity $ 1 + {\tan ^2}x = {\sec ^2}x $ in the numerator. This will give us:
$ \Rightarrow \int {\dfrac{{\tan x + 1 + {{\tan }^2}x}}{{1 + \tan x + {{\tan }^2}x}}} dx - \int {\dfrac{{\left( {1 + {{\tan }^2}x} \right)}}{{1 + \tan x + {{\tan }^2}x}}} dx = \int {1dx - \int {\dfrac{{{{\sec }^2}x}}{{1 + \tan x + {{\tan }^2}x}}} } dx $
Let’s use the substitution method to solve the second integral. Assume $ \tan x = m \Rightarrow {\sec ^2}xdx = dm $
$ \Rightarrow \int {1dx - \int {\dfrac{{{{\sec }^2}x}}{{1 + \tan x + {{\tan }^2}x}}} } dx = x - \int {\dfrac{{dm}}{{1 + m + {m^2}}}} $
Now, using the identity $ {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} $ in the denominator for completing the square in the quadratic function. For this, we need to add and subtract $ \dfrac{1}{4} $ in the denominator and also multiply and divide with $ 2 $ in the term $ 'm' $
$ \Rightarrow 1 + m + {m^2} = 1 + 2 \times \dfrac{1}{2} \times m + {m^2} + \dfrac{1}{4} - \dfrac{1}{4} = {\left( {m + \dfrac{1}{2}} \right)^2} + 1 - \dfrac{1}{4} = {\left( {m + \dfrac{1}{2}} \right)^2} + {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} $
Therefore, we can now put $ 1 + m + {m^2} = {\left( {m + \dfrac{1}{2}} \right)^2} + {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} $ in the denominator
$ \Rightarrow x - \int {\dfrac{{dm}}{{1 + m + {m^2}}}} = x - \int {\dfrac{{dm}}{{{{\left( {m + \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}}} $
As we know the integration formula $ \int {\dfrac{{dx}}{{{a^2} + {x^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + C $ , which can be used here with $ x = m + \dfrac{1}{2}{\text{ and }}a = \dfrac{{\sqrt 3 }}{2} $
$ \Rightarrow x - \int {\dfrac{{dm}}{{{{\left( {m + \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}}} = x - \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\dfrac{{\left( {m + \dfrac{1}{2}} \right)}}{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}} = x - \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{2m + 1}}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) = x - \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2m + 1}}{{\sqrt 3 }}} \right) + C $ Now, we can put back our substitution $ \tan x = m $ into this solution.
Therefore, we get: $ \int {\dfrac{{\tan x}}{{1 + \tan x + {{\tan }^2}x}}} dx = x - \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2\tan x + 1}}{{\sqrt 3 }}} \right) + C $
We can now compare the coefficient of our solution for this integral with the given equation, i.e. $ \int {\dfrac{{\tan x}}{{1 + \tan x + {{\tan }^2}x}}} dx = x - \dfrac{K}{{\sqrt A }}{\tan ^{ - 1}}\left( {\dfrac{{K\tan x + 1}}{{\sqrt A }}} \right) + C $
Thus, we can clearly see that $ K = 2{\text{ and }}A = 3 $ and the required ordered pair $ \left( {K,A} \right) = \left( {2,3} \right) $
Hence, the option (A) is the correct answer
Note: In questions like this, transforming the solution of the integration into the required form to compare with the given expression is also an important part. Do not forget to add a constant ‘C’ after the integration to compensate for a zero term. Since we know that the differentiation of any constant is zero. Therefore, a solution of indefinite integration should have a constant term in it.
Complete step-by-step solution:
Here we need to solve the integral on the left side of the given equation and then compare the solution with the right side of the equation. And find the values of the coefficients in the right side.
Let’s take the right side and try to evaluate the integral.
By adding and subtracting the term $ \left( {1 + {{\tan }^2}x} \right) $ in the numerator, we get:
$ \Rightarrow \int {\dfrac{{\tan x}}{{1 + \tan x + {{\tan }^2}x}}} dx = \int {\dfrac{{\tan x + 1 + {{\tan }^2}x - \left( {1 + {{\tan }^2}x} \right)}}{{1 + \tan x + {{\tan }^2}x}}} dx $
Now this will let us separate this one integral into two parts and solve them separately
$ \Rightarrow \int {\dfrac{{\tan x + 1 + {{\tan }^2}x - \left( {1 + {{\tan }^2}x} \right)}}{{1 + \tan x + {{\tan }^2}x}}} dx = \int {\dfrac{{\tan x + 1 + {{\tan }^2}x}}{{1 + \tan x + {{\tan }^2}x}}} dx - \int {\dfrac{{\left( {1 + {{\tan }^2}x} \right)}}{{1 + \tan x + {{\tan }^2}x}}} dx $
We can see that the first integral becomes $ \int {1dx} $ and for the second one we can use the trigonometric identity $ 1 + {\tan ^2}x = {\sec ^2}x $ in the numerator. This will give us:
$ \Rightarrow \int {\dfrac{{\tan x + 1 + {{\tan }^2}x}}{{1 + \tan x + {{\tan }^2}x}}} dx - \int {\dfrac{{\left( {1 + {{\tan }^2}x} \right)}}{{1 + \tan x + {{\tan }^2}x}}} dx = \int {1dx - \int {\dfrac{{{{\sec }^2}x}}{{1 + \tan x + {{\tan }^2}x}}} } dx $
Let’s use the substitution method to solve the second integral. Assume $ \tan x = m \Rightarrow {\sec ^2}xdx = dm $
$ \Rightarrow \int {1dx - \int {\dfrac{{{{\sec }^2}x}}{{1 + \tan x + {{\tan }^2}x}}} } dx = x - \int {\dfrac{{dm}}{{1 + m + {m^2}}}} $
Now, using the identity $ {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} $ in the denominator for completing the square in the quadratic function. For this, we need to add and subtract $ \dfrac{1}{4} $ in the denominator and also multiply and divide with $ 2 $ in the term $ 'm' $
$ \Rightarrow 1 + m + {m^2} = 1 + 2 \times \dfrac{1}{2} \times m + {m^2} + \dfrac{1}{4} - \dfrac{1}{4} = {\left( {m + \dfrac{1}{2}} \right)^2} + 1 - \dfrac{1}{4} = {\left( {m + \dfrac{1}{2}} \right)^2} + {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} $
Therefore, we can now put $ 1 + m + {m^2} = {\left( {m + \dfrac{1}{2}} \right)^2} + {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} $ in the denominator
$ \Rightarrow x - \int {\dfrac{{dm}}{{1 + m + {m^2}}}} = x - \int {\dfrac{{dm}}{{{{\left( {m + \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}}} $
As we know the integration formula $ \int {\dfrac{{dx}}{{{a^2} + {x^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + C $ , which can be used here with $ x = m + \dfrac{1}{2}{\text{ and }}a = \dfrac{{\sqrt 3 }}{2} $
$ \Rightarrow x - \int {\dfrac{{dm}}{{{{\left( {m + \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}}} = x - \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\dfrac{{\left( {m + \dfrac{1}{2}} \right)}}{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}} = x - \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{2m + 1}}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) = x - \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2m + 1}}{{\sqrt 3 }}} \right) + C $ Now, we can put back our substitution $ \tan x = m $ into this solution.
Therefore, we get: $ \int {\dfrac{{\tan x}}{{1 + \tan x + {{\tan }^2}x}}} dx = x - \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2\tan x + 1}}{{\sqrt 3 }}} \right) + C $
We can now compare the coefficient of our solution for this integral with the given equation, i.e. $ \int {\dfrac{{\tan x}}{{1 + \tan x + {{\tan }^2}x}}} dx = x - \dfrac{K}{{\sqrt A }}{\tan ^{ - 1}}\left( {\dfrac{{K\tan x + 1}}{{\sqrt A }}} \right) + C $
Thus, we can clearly see that $ K = 2{\text{ and }}A = 3 $ and the required ordered pair $ \left( {K,A} \right) = \left( {2,3} \right) $
Hence, the option (A) is the correct answer
Note: In questions like this, transforming the solution of the integration into the required form to compare with the given expression is also an important part. Do not forget to add a constant ‘C’ after the integration to compensate for a zero term. Since we know that the differentiation of any constant is zero. Therefore, a solution of indefinite integration should have a constant term in it.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

