
If in the expansion of \[{{\left( {{3}^{\dfrac{-x}{4}}}+{{3}^{\dfrac{5x}{4}}} \right)}^{n}}\]the sum of binomial Coefficient is 64 then value of n is
a) 6
b) 7
c) 8
d) 9
Answer
586.8k+ views
Hint: first write the general term of expansion and the then find the expression for some of the binomial coefficient then find the expansion of ${{\left( 1+x \right)}^{n}}$ by putting the value of $x=1$ Compare the equation to get the answer.
Complete step by step solution: First of all we will write general term of expansion of \[{{\left( {{3}^{\dfrac{-x}{4}}}+{{3}^{\dfrac{5x}{4}}} \right)}^{n}}\]
\[T_{r+1}={}^{n}{{C}_{r}}{{\left( {{3}^{\dfrac{-x}{4}}} \right)}^{n-r}}{{\left( {{3}^{\dfrac{5x}{4}}} \right)}^{r}}\]
Here binomial Coefficient is ${}^{n}{{C}_{r}}$.
So it is given that
$\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}=64$
Expanding
\[{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+\_\ \_\ \_+{}^{n}{{C}_{n}}=64\] ----(1)
Now we know that the Binomial expansion of ${{(1+x)}^{n}}$.
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{\left( 1 \right)}^{n-r}}{{x}^{r}}$
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{\left( 1 \right)}^{n}}\ \centerdot \ {{x}^{0}}+{}^{n}{{C}_{1}}{{\left( 1 \right)}^{n-1}}\ \centerdot \ {{x}^{1}}+\_\ \_\ \_+{}^{n}{{C}_{n}}{{\left( 1 \right)}^{n-n}}\ \centerdot \ {{x}^{n}}\]
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}\ +{}^{n}{{C}_{1}}\ \left( x \right)+{}^{n}{{C}_{2}}{{\left( x \right)}^{2}}\_\ \_\ \_+{}^{n}{{C}_{n}}\ {{\left( x \right)}^{n}}\]
Now putting $x=1$ we get
\[\Rightarrow {{\left( 1+1 \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}\,\centerdot \ 1+{}^{n}{{C}_{2}}\centerdot \ {{\left( 1 \right)}^{2}}+\_\ \_\ \_+{}^{n}{{C}_{n}}{{\left( 1 \right)}^{n}}\]
\[\Rightarrow {{2}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}\,+{}^{n}{{C}_{2}}+\_\ \_\ \_+{}^{n}{{C}_{n}}\]-------(2)
We get (1) = (2)
So, \[{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}\,+{}^{n}{{C}_{2}}+\_\ \_\ \_+{}^{n}{{C}_{n}}=64={{2}^{n}}\]
\[\Rightarrow {{2}^{n}}=64\]
Since ${{2}^{6}}=64$
So, $\Rightarrow {{2}^{n}}={{2}^{\left( 6 \right)}}$
Comparing LHS and RHS
We get n=6
So n =6 is the answer.
Note: the general formula for expansion is
${{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{x}^{n-r}}{{y}^{r}}$ where
${}^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$
Here $n\in N,\ x,\ y\in R$.
Complete step by step solution: First of all we will write general term of expansion of \[{{\left( {{3}^{\dfrac{-x}{4}}}+{{3}^{\dfrac{5x}{4}}} \right)}^{n}}\]
\[T_{r+1}={}^{n}{{C}_{r}}{{\left( {{3}^{\dfrac{-x}{4}}} \right)}^{n-r}}{{\left( {{3}^{\dfrac{5x}{4}}} \right)}^{r}}\]
Here binomial Coefficient is ${}^{n}{{C}_{r}}$.
So it is given that
$\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}=64$
Expanding
\[{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+\_\ \_\ \_+{}^{n}{{C}_{n}}=64\] ----(1)
Now we know that the Binomial expansion of ${{(1+x)}^{n}}$.
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{\left( 1 \right)}^{n-r}}{{x}^{r}}$
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{\left( 1 \right)}^{n}}\ \centerdot \ {{x}^{0}}+{}^{n}{{C}_{1}}{{\left( 1 \right)}^{n-1}}\ \centerdot \ {{x}^{1}}+\_\ \_\ \_+{}^{n}{{C}_{n}}{{\left( 1 \right)}^{n-n}}\ \centerdot \ {{x}^{n}}\]
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}\ +{}^{n}{{C}_{1}}\ \left( x \right)+{}^{n}{{C}_{2}}{{\left( x \right)}^{2}}\_\ \_\ \_+{}^{n}{{C}_{n}}\ {{\left( x \right)}^{n}}\]
Now putting $x=1$ we get
\[\Rightarrow {{\left( 1+1 \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}\,\centerdot \ 1+{}^{n}{{C}_{2}}\centerdot \ {{\left( 1 \right)}^{2}}+\_\ \_\ \_+{}^{n}{{C}_{n}}{{\left( 1 \right)}^{n}}\]
\[\Rightarrow {{2}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}\,+{}^{n}{{C}_{2}}+\_\ \_\ \_+{}^{n}{{C}_{n}}\]-------(2)
We get (1) = (2)
So, \[{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}\,+{}^{n}{{C}_{2}}+\_\ \_\ \_+{}^{n}{{C}_{n}}=64={{2}^{n}}\]
\[\Rightarrow {{2}^{n}}=64\]
Since ${{2}^{6}}=64$
So, $\Rightarrow {{2}^{n}}={{2}^{\left( 6 \right)}}$
Comparing LHS and RHS
We get n=6
So n =6 is the answer.
Note: the general formula for expansion is
${{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{x}^{n-r}}{{y}^{r}}$ where
${}^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$
Here $n\in N,\ x,\ y\in R$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

