
If in a triangle \[ABC\] , \[\cos A + \cos B + \cos C = \dfrac{3}{2}\] , then the triangle is
A.Equilateral
B.Isosceles
C.Right angle triangle
D.None of these
Answer
495.3k+ views
Hint: In the given question , we consider a triangle with sides \[a,b\& c\] , now in any triangle the cosine of any of the angle say \[\left( A \right)\] is given by \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] , where \[a,b\& c\] are the sides of the triangle . So, using these formulas we will find the value of \[\cos B\] and \[\cos C\] , then solve it accordingly .
Complete step by step solution:
Given : \[\cos A + \cos B + \cos C = \dfrac{3}{2}\]
Now using the formula of \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] we get ,
\[\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \cos B + \cos C = \dfrac{3}{2}\] ,
Now using the formula for \[\cos B = \dfrac{{{c^2} + {a^2} - {b^2}}}{{2bc}}\] we get ,
\[\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}} + \cos C = \dfrac{3}{2}\]
Now using the formula for \[\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\] , we get
\[\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \dfrac{3}{2}\]
Now shifting \[\dfrac{3}{2}\] on LHS , we get
\[\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} - \dfrac{3}{2} = 0\]
Taking \[2abc\] as the LCM we get ,
\[\dfrac{{a\left( {{b^2} + {c^2} - {a^2}} \right) + b\left( {{c^2} + {a^2} - {b^2}} \right) + c\left( {{a^2} + {b^2} - {c^2}} \right) - 3abc}}{{2abc}} = 0\]
On simplifying we get ,
\[a\left( {{b^2} + {c^2} - {a^2}} \right) + b\left( {{c^2} + {a^2} - {b^2}} \right) + c\left( {{a^2} + {b^2} - {c^2}} \right) = 3abc\]
Now multiplying \[a,b\& c\] with \[{a^2},{b^2}\& {c^2}\] respectively inside the bracket , we get
\[a\left( {{b^2} + {c^2}} \right) - {a^3} + b\left( {{c^2} + {a^2}} \right) - {b^3} + c\left( {{a^2} + {b^2}} \right) - {c^3} = 3abc\]
Now taking the cube terms on RHS we get ,
\[a\left( {{b^2} + {c^2}} \right) + b\left( {{c^2} + {a^2}} \right) + c\left( {{a^2} + {b^2}} \right) = {a^3} + {b^3} + {c^3} + 3abc\]
Now adding \[ - 6abc\] on both sides we get ,
\[a\left( {{b^2} + {c^2}} \right) + b\left( {{c^2} + {a^2}} \right) + c\left( {{a^2} + {b^2}} \right) - 6abc = {a^3} + {b^3} + {c^3} + 3abc - 6abc\]
On simplifying by splitting the \[ - 6abc\] into \[ - 2abc\] three times we get ,
\[a{b^2} + a{c^2} - 2abc + b{c^2} + b{a^2} - 2abc + c{a^2} + c{b^2} - 2abc = {a^3} + {b^3} + {c^3} - 3abc\]
Now taking \[a,b\& c\] common we get ,
\[a\left( {{b^2} + {c^2} - 2bc} \right) + b\left( {{c^2} + {a^2} - 2ac} \right) + c\left( {{a^2} + {b^2} - 2ab} \right) = {a^3} + {b^3} + {c^3} - 3abc\]
Now using the algebraic identities we get ,
\[a{\left( {b - c} \right)^2} + b{\left( {c - a} \right)^2} + c{\left( {a - b} \right)^2} = {a^3} + {b^3} + {c^3} - 3abc\]
Now using the identity of \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\] , we get
\[a{\left( {b - c} \right)^2} + b{\left( {c - a} \right)^2} + c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
Now multiplying by \[2\] on both sides we get ,
\[2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left( {2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca} \right)\]
On splitting the square terms oh RHS we get ,
\[2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} - 2ab + {b^2} + {c^2} - 2bc + {c^2} + {a^2} - 2ca} \right)\]
Now using the algebraic identities we get ,
\[2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right]\]
On simplifying we get ,
\[2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right){\left( {a - b} \right)^2} + \left( {a + b + c} \right){\left( {b - c} \right)^2} + \left( {a + b + c} \right){\left( {c - a} \right)^2}\]
Now subtracting the like terms form RHS with LHS , we get
\[\left( {a + b + c - 2c} \right){\left( {a - b} \right)^2} + \left( {a + b + c - 2a} \right){\left( {b - c} \right)^2} + \left( {a + b + c - 2b} \right){\left( {c - a} \right)^2} = 0\]
On solving we get ,
\[\left( {a + b - c} \right){\left( {a - b} \right)^2} + \left( {b + c - a} \right){\left( {b - c} \right)^2} + \left( {a + c - b} \right){\left( {c - a} \right)^2} = 0\]
Now in the above expression the terms \[\left( {a + b - c} \right)\] , \[\left( {b + c - a} \right)\] and \[\left( {a + c - b} \right)\] represents the sum two sides minus third side , we know that in a triangle sum of two sides is always greater than third side, therefore these term will not be equal to zero , so the whole square terms will be zero ,
\[{\left( {a - b} \right)^2} = 0\] , \[{\left( {b - c} \right)^2} = 0\] and \[{\left( {c - a} \right)^2} = 0\]
On solving we get ,
\[a = b\] , \[b = c\] and \[c = b\]
Therefore , we get
\[a = b = c\]
Therefore , the triangle is equilateral.
So, the correct answer is “Option A”.
Note: In question like these , never try for given option , like do not solve for equilateral or isosceles or any other given option , solve the related to trigonometry and triangle with the cosine formulas for different angles , then apply the condition for different triangle. All sides are equal and represent an equilateral triangle and also note that an equilateral triangle is also an equiangular triangle.
Complete step by step solution:
Given : \[\cos A + \cos B + \cos C = \dfrac{3}{2}\]
Now using the formula of \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] we get ,
\[\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \cos B + \cos C = \dfrac{3}{2}\] ,
Now using the formula for \[\cos B = \dfrac{{{c^2} + {a^2} - {b^2}}}{{2bc}}\] we get ,
\[\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}} + \cos C = \dfrac{3}{2}\]
Now using the formula for \[\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\] , we get
\[\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \dfrac{3}{2}\]
Now shifting \[\dfrac{3}{2}\] on LHS , we get
\[\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} - \dfrac{3}{2} = 0\]
Taking \[2abc\] as the LCM we get ,
\[\dfrac{{a\left( {{b^2} + {c^2} - {a^2}} \right) + b\left( {{c^2} + {a^2} - {b^2}} \right) + c\left( {{a^2} + {b^2} - {c^2}} \right) - 3abc}}{{2abc}} = 0\]
On simplifying we get ,
\[a\left( {{b^2} + {c^2} - {a^2}} \right) + b\left( {{c^2} + {a^2} - {b^2}} \right) + c\left( {{a^2} + {b^2} - {c^2}} \right) = 3abc\]
Now multiplying \[a,b\& c\] with \[{a^2},{b^2}\& {c^2}\] respectively inside the bracket , we get
\[a\left( {{b^2} + {c^2}} \right) - {a^3} + b\left( {{c^2} + {a^2}} \right) - {b^3} + c\left( {{a^2} + {b^2}} \right) - {c^3} = 3abc\]
Now taking the cube terms on RHS we get ,
\[a\left( {{b^2} + {c^2}} \right) + b\left( {{c^2} + {a^2}} \right) + c\left( {{a^2} + {b^2}} \right) = {a^3} + {b^3} + {c^3} + 3abc\]
Now adding \[ - 6abc\] on both sides we get ,
\[a\left( {{b^2} + {c^2}} \right) + b\left( {{c^2} + {a^2}} \right) + c\left( {{a^2} + {b^2}} \right) - 6abc = {a^3} + {b^3} + {c^3} + 3abc - 6abc\]
On simplifying by splitting the \[ - 6abc\] into \[ - 2abc\] three times we get ,
\[a{b^2} + a{c^2} - 2abc + b{c^2} + b{a^2} - 2abc + c{a^2} + c{b^2} - 2abc = {a^3} + {b^3} + {c^3} - 3abc\]
Now taking \[a,b\& c\] common we get ,
\[a\left( {{b^2} + {c^2} - 2bc} \right) + b\left( {{c^2} + {a^2} - 2ac} \right) + c\left( {{a^2} + {b^2} - 2ab} \right) = {a^3} + {b^3} + {c^3} - 3abc\]
Now using the algebraic identities we get ,
\[a{\left( {b - c} \right)^2} + b{\left( {c - a} \right)^2} + c{\left( {a - b} \right)^2} = {a^3} + {b^3} + {c^3} - 3abc\]
Now using the identity of \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\] , we get
\[a{\left( {b - c} \right)^2} + b{\left( {c - a} \right)^2} + c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
Now multiplying by \[2\] on both sides we get ,
\[2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left( {2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca} \right)\]
On splitting the square terms oh RHS we get ,
\[2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} - 2ab + {b^2} + {c^2} - 2bc + {c^2} + {a^2} - 2ca} \right)\]
Now using the algebraic identities we get ,
\[2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right]\]
On simplifying we get ,
\[2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right){\left( {a - b} \right)^2} + \left( {a + b + c} \right){\left( {b - c} \right)^2} + \left( {a + b + c} \right){\left( {c - a} \right)^2}\]
Now subtracting the like terms form RHS with LHS , we get
\[\left( {a + b + c - 2c} \right){\left( {a - b} \right)^2} + \left( {a + b + c - 2a} \right){\left( {b - c} \right)^2} + \left( {a + b + c - 2b} \right){\left( {c - a} \right)^2} = 0\]
On solving we get ,
\[\left( {a + b - c} \right){\left( {a - b} \right)^2} + \left( {b + c - a} \right){\left( {b - c} \right)^2} + \left( {a + c - b} \right){\left( {c - a} \right)^2} = 0\]
Now in the above expression the terms \[\left( {a + b - c} \right)\] , \[\left( {b + c - a} \right)\] and \[\left( {a + c - b} \right)\] represents the sum two sides minus third side , we know that in a triangle sum of two sides is always greater than third side, therefore these term will not be equal to zero , so the whole square terms will be zero ,
\[{\left( {a - b} \right)^2} = 0\] , \[{\left( {b - c} \right)^2} = 0\] and \[{\left( {c - a} \right)^2} = 0\]
On solving we get ,
\[a = b\] , \[b = c\] and \[c = b\]
Therefore , we get
\[a = b = c\]
Therefore , the triangle is equilateral.
So, the correct answer is “Option A”.
Note: In question like these , never try for given option , like do not solve for equilateral or isosceles or any other given option , solve the related to trigonometry and triangle with the cosine formulas for different angles , then apply the condition for different triangle. All sides are equal and represent an equilateral triangle and also note that an equilateral triangle is also an equiangular triangle.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

