Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If in a triangle \[ABC\] , \[\cos A + \cos B + \cos C = \dfrac{3}{2}\] , then the triangle is
A.Equilateral
B.Isosceles
C.Right angle triangle
D.None of these

Answer
VerifiedVerified
495.3k+ views
Hint: In the given question , we consider a triangle with sides \[a,b\& c\] , now in any triangle the cosine of any of the angle say \[\left( A \right)\] is given by \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] , where \[a,b\& c\] are the sides of the triangle . So, using these formulas we will find the value of \[\cos B\] and \[\cos C\] , then solve it accordingly .

Complete step by step solution:
Given : \[\cos A + \cos B + \cos C = \dfrac{3}{2}\]
Now using the formula of \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] we get ,
\[\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \cos B + \cos C = \dfrac{3}{2}\] ,
Now using the formula for \[\cos B = \dfrac{{{c^2} + {a^2} - {b^2}}}{{2bc}}\] we get ,
\[\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}} + \cos C = \dfrac{3}{2}\]
Now using the formula for \[\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\] , we get
\[\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \dfrac{3}{2}\]
Now shifting \[\dfrac{3}{2}\] on LHS , we get
\[\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} - \dfrac{3}{2} = 0\]
Taking \[2abc\] as the LCM we get ,
\[\dfrac{{a\left( {{b^2} + {c^2} - {a^2}} \right) + b\left( {{c^2} + {a^2} - {b^2}} \right) + c\left( {{a^2} + {b^2} - {c^2}} \right) - 3abc}}{{2abc}} = 0\]
On simplifying we get ,
\[a\left( {{b^2} + {c^2} - {a^2}} \right) + b\left( {{c^2} + {a^2} - {b^2}} \right) + c\left( {{a^2} + {b^2} - {c^2}} \right) = 3abc\]
Now multiplying \[a,b\& c\] with \[{a^2},{b^2}\& {c^2}\] respectively inside the bracket , we get
\[a\left( {{b^2} + {c^2}} \right) - {a^3} + b\left( {{c^2} + {a^2}} \right) - {b^3} + c\left( {{a^2} + {b^2}} \right) - {c^3} = 3abc\]
Now taking the cube terms on RHS we get ,
\[a\left( {{b^2} + {c^2}} \right) + b\left( {{c^2} + {a^2}} \right) + c\left( {{a^2} + {b^2}} \right) = {a^3} + {b^3} + {c^3} + 3abc\]
Now adding \[ - 6abc\] on both sides we get ,
\[a\left( {{b^2} + {c^2}} \right) + b\left( {{c^2} + {a^2}} \right) + c\left( {{a^2} + {b^2}} \right) - 6abc = {a^3} + {b^3} + {c^3} + 3abc - 6abc\]
On simplifying by splitting the \[ - 6abc\] into \[ - 2abc\] three times we get ,
\[a{b^2} + a{c^2} - 2abc + b{c^2} + b{a^2} - 2abc + c{a^2} + c{b^2} - 2abc = {a^3} + {b^3} + {c^3} - 3abc\]
Now taking \[a,b\& c\] common we get ,
\[a\left( {{b^2} + {c^2} - 2bc} \right) + b\left( {{c^2} + {a^2} - 2ac} \right) + c\left( {{a^2} + {b^2} - 2ab} \right) = {a^3} + {b^3} + {c^3} - 3abc\]
Now using the algebraic identities we get ,
\[a{\left( {b - c} \right)^2} + b{\left( {c - a} \right)^2} + c{\left( {a - b} \right)^2} = {a^3} + {b^3} + {c^3} - 3abc\]
Now using the identity of \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\] , we get
\[a{\left( {b - c} \right)^2} + b{\left( {c - a} \right)^2} + c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
Now multiplying by \[2\] on both sides we get ,
\[2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left( {2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca} \right)\]
On splitting the square terms oh RHS we get ,
\[2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} - 2ab + {b^2} + {c^2} - 2bc + {c^2} + {a^2} - 2ca} \right)\]
Now using the algebraic identities we get ,
\[2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right]\]
On simplifying we get ,
\[2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right){\left( {a - b} \right)^2} + \left( {a + b + c} \right){\left( {b - c} \right)^2} + \left( {a + b + c} \right){\left( {c - a} \right)^2}\]
Now subtracting the like terms form RHS with LHS , we get
\[\left( {a + b + c - 2c} \right){\left( {a - b} \right)^2} + \left( {a + b + c - 2a} \right){\left( {b - c} \right)^2} + \left( {a + b + c - 2b} \right){\left( {c - a} \right)^2} = 0\]
On solving we get ,
\[\left( {a + b - c} \right){\left( {a - b} \right)^2} + \left( {b + c - a} \right){\left( {b - c} \right)^2} + \left( {a + c - b} \right){\left( {c - a} \right)^2} = 0\]
Now in the above expression the terms \[\left( {a + b - c} \right)\] , \[\left( {b + c - a} \right)\] and \[\left( {a + c - b} \right)\] represents the sum two sides minus third side , we know that in a triangle sum of two sides is always greater than third side, therefore these term will not be equal to zero , so the whole square terms will be zero ,
\[{\left( {a - b} \right)^2} = 0\] , \[{\left( {b - c} \right)^2} = 0\] and \[{\left( {c - a} \right)^2} = 0\]
On solving we get ,
\[a = b\] , \[b = c\] and \[c = b\]
Therefore , we get
\[a = b = c\]
Therefore , the triangle is equilateral.
So, the correct answer is “Option A”.

Note: In question like these , never try for given option , like do not solve for equilateral or isosceles or any other given option , solve the related to trigonometry and triangle with the cosine formulas for different angles , then apply the condition for different triangle. All sides are equal and represent an equilateral triangle and also note that an equilateral triangle is also an equiangular triangle.