
If in a triangle ABC, 2 cos A = sin B cosec C, then
(a) a = h
(b) b = c
(c) c = a
(d) 2a = bc
Answer
600.3k+ views
Hint: To solve this question given above, we will first find out the value of sin B from the relation given in the question. Then we will make use of the fact that the sum of all the angles in a triangle is \[{{180}^{o}}.\] From there, we will find the value of B in terms of A and C and then we will put this value in sin B. Now, we will write these trigonometric ratios in terms of the side length.
Complete step-by-step answer:
To start with, we are given in the question that,
\[2\cos A=\sin B\operatorname{cosec}C.....\left( i \right)\]
Now, we know that, \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }.\] Thus, applying this formula in (i), we will get,
\[\Rightarrow 2\cos A=\dfrac{\sin B}{\sin C}\]
\[\Rightarrow 2\cos A\sin C=\sin B\]
\[\Rightarrow \sin B=2\cos A\sin C.....\left( ii \right)\]
Now, we will draw a triangle ABC.
Now, we know that the sum of all the angles in the triangle is \[{{180}^{o}}.\] Thus, we will get,
\[A+B+C={{180}^{o}}\]
\[\Rightarrow A+C={{180}^{o}}-B\]
\[\Rightarrow B={{180}^{o}}-\left( A+C \right).....\left( iii \right)\]
Now, we will apply sine on both sides. Thus, we will get,
\[\Rightarrow \sin B=\sin \left[ {{180}^{o}}-\left( A+C \right) \right]\]
We know that, \[\sin \left( {{180}^{o}}-\theta \right)=\sin \theta ,\] so we will get,
\[\Rightarrow \sin B=\sin \left( A+C \right)....\left( iv \right)\]
From (ii) and (iv), we will get,
\[\Rightarrow \sin \left( A+C \right)=2\cos A\sin C\]
Now, we will apply the following identity in the above equation,
\[\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y\]
Thus, we will get,
\[\Rightarrow \sin A\cos C+\cos A\sin C=2\cos A\sin C\]
\[\Rightarrow \sin A\cos C=\cos A\sin C.....\left( v \right)\]
Now, we know that,
\[\dfrac{\sin A}{a}=\dfrac{\sin C}{c}=k\]
Also,
\[\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}\]
\[\cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}\]
Thus, we will put these values in equation (v). After doing this, we will get,
\[\Rightarrow ka\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab} \right)=\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)kc\]
\[\Rightarrow a\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab} \right)=c\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)\]
\[\Rightarrow \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2b}=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2b}\]
\[\Rightarrow {{a}^{2}}+{{b}^{2}}-{{c}^{2}}={{b}^{2}}+{{c}^{2}}-{{a}^{2}}\]
\[\Rightarrow 2{{a}^{2}}=2{{c}^{2}}\]
\[\Rightarrow {{a}^{2}}={{c}^{2}}\]
\[\Rightarrow a=c\]
Hence, the option (c) is the right answer.
Note: The above question can also be solved by an alternate method as shown below:
\[2\cos A=\sin B\operatorname{cosec}C\]
Now, we will write cosec C in terms of sin C with the help of the following relation:
\[\operatorname{cosec}C=\dfrac{1}{\sin C}\]
Thus, we will get the following equation:
\[2\cos A=\dfrac{\sin B}{\sin C}\]
Now, we know that,
\[\dfrac{\sin B}{b}=\dfrac{\sin C}{c}\]
\[\Rightarrow \dfrac{\sin B}{\sin C}=\dfrac{b}{c}\]
Thus, we will get the following equation,
\[\Rightarrow 2\cos A=\dfrac{b}{c}\]
Now, we will use the formula of cos A in the above equation which is shown below:
\[\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}\]
Thus, we will get,
\[\Rightarrow 2\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)=\dfrac{b}{c}\]
\[\Rightarrow \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{bc}=\dfrac{b}{c}\]
\[\Rightarrow {{b}^{2}}+{{c}^{2}}-{{a}^{2}}={{b}^{2}}\]
\[\Rightarrow {{c}^{2}}-{{a}^{2}}=0\]
\[\Rightarrow {{c}^{2}}={{a}^{2}}\]
\[\Rightarrow c=a\]
Complete step-by-step answer:
To start with, we are given in the question that,
\[2\cos A=\sin B\operatorname{cosec}C.....\left( i \right)\]
Now, we know that, \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }.\] Thus, applying this formula in (i), we will get,
\[\Rightarrow 2\cos A=\dfrac{\sin B}{\sin C}\]
\[\Rightarrow 2\cos A\sin C=\sin B\]
\[\Rightarrow \sin B=2\cos A\sin C.....\left( ii \right)\]
Now, we will draw a triangle ABC.
Now, we know that the sum of all the angles in the triangle is \[{{180}^{o}}.\] Thus, we will get,
\[A+B+C={{180}^{o}}\]
\[\Rightarrow A+C={{180}^{o}}-B\]
\[\Rightarrow B={{180}^{o}}-\left( A+C \right).....\left( iii \right)\]
Now, we will apply sine on both sides. Thus, we will get,
\[\Rightarrow \sin B=\sin \left[ {{180}^{o}}-\left( A+C \right) \right]\]
We know that, \[\sin \left( {{180}^{o}}-\theta \right)=\sin \theta ,\] so we will get,
\[\Rightarrow \sin B=\sin \left( A+C \right)....\left( iv \right)\]
From (ii) and (iv), we will get,
\[\Rightarrow \sin \left( A+C \right)=2\cos A\sin C\]
Now, we will apply the following identity in the above equation,
\[\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y\]
Thus, we will get,
\[\Rightarrow \sin A\cos C+\cos A\sin C=2\cos A\sin C\]
\[\Rightarrow \sin A\cos C=\cos A\sin C.....\left( v \right)\]
Now, we know that,
\[\dfrac{\sin A}{a}=\dfrac{\sin C}{c}=k\]
Also,
\[\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}\]
\[\cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}\]
Thus, we will put these values in equation (v). After doing this, we will get,
\[\Rightarrow ka\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab} \right)=\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)kc\]
\[\Rightarrow a\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab} \right)=c\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)\]
\[\Rightarrow \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2b}=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2b}\]
\[\Rightarrow {{a}^{2}}+{{b}^{2}}-{{c}^{2}}={{b}^{2}}+{{c}^{2}}-{{a}^{2}}\]
\[\Rightarrow 2{{a}^{2}}=2{{c}^{2}}\]
\[\Rightarrow {{a}^{2}}={{c}^{2}}\]
\[\Rightarrow a=c\]
Hence, the option (c) is the right answer.
Note: The above question can also be solved by an alternate method as shown below:
\[2\cos A=\sin B\operatorname{cosec}C\]
Now, we will write cosec C in terms of sin C with the help of the following relation:
\[\operatorname{cosec}C=\dfrac{1}{\sin C}\]
Thus, we will get the following equation:
\[2\cos A=\dfrac{\sin B}{\sin C}\]
Now, we know that,
\[\dfrac{\sin B}{b}=\dfrac{\sin C}{c}\]
\[\Rightarrow \dfrac{\sin B}{\sin C}=\dfrac{b}{c}\]
Thus, we will get the following equation,
\[\Rightarrow 2\cos A=\dfrac{b}{c}\]
Now, we will use the formula of cos A in the above equation which is shown below:
\[\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}\]
Thus, we will get,
\[\Rightarrow 2\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)=\dfrac{b}{c}\]
\[\Rightarrow \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{bc}=\dfrac{b}{c}\]
\[\Rightarrow {{b}^{2}}+{{c}^{2}}-{{a}^{2}}={{b}^{2}}\]
\[\Rightarrow {{c}^{2}}-{{a}^{2}}=0\]
\[\Rightarrow {{c}^{2}}={{a}^{2}}\]
\[\Rightarrow c=a\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

