
If in a triangle ABC, 2 cos A = sin B cosec C, then
(a) a = h
(b) b = c
(c) c = a
(d) 2a = bc
Answer
583.8k+ views
Hint: To solve this question given above, we will first find out the value of sin B from the relation given in the question. Then we will make use of the fact that the sum of all the angles in a triangle is \[{{180}^{o}}.\] From there, we will find the value of B in terms of A and C and then we will put this value in sin B. Now, we will write these trigonometric ratios in terms of the side length.
Complete step-by-step answer:
To start with, we are given in the question that,
\[2\cos A=\sin B\operatorname{cosec}C.....\left( i \right)\]
Now, we know that, \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }.\] Thus, applying this formula in (i), we will get,
\[\Rightarrow 2\cos A=\dfrac{\sin B}{\sin C}\]
\[\Rightarrow 2\cos A\sin C=\sin B\]
\[\Rightarrow \sin B=2\cos A\sin C.....\left( ii \right)\]
Now, we will draw a triangle ABC.
Now, we know that the sum of all the angles in the triangle is \[{{180}^{o}}.\] Thus, we will get,
\[A+B+C={{180}^{o}}\]
\[\Rightarrow A+C={{180}^{o}}-B\]
\[\Rightarrow B={{180}^{o}}-\left( A+C \right).....\left( iii \right)\]
Now, we will apply sine on both sides. Thus, we will get,
\[\Rightarrow \sin B=\sin \left[ {{180}^{o}}-\left( A+C \right) \right]\]
We know that, \[\sin \left( {{180}^{o}}-\theta \right)=\sin \theta ,\] so we will get,
\[\Rightarrow \sin B=\sin \left( A+C \right)....\left( iv \right)\]
From (ii) and (iv), we will get,
\[\Rightarrow \sin \left( A+C \right)=2\cos A\sin C\]
Now, we will apply the following identity in the above equation,
\[\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y\]
Thus, we will get,
\[\Rightarrow \sin A\cos C+\cos A\sin C=2\cos A\sin C\]
\[\Rightarrow \sin A\cos C=\cos A\sin C.....\left( v \right)\]
Now, we know that,
\[\dfrac{\sin A}{a}=\dfrac{\sin C}{c}=k\]
Also,
\[\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}\]
\[\cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}\]
Thus, we will put these values in equation (v). After doing this, we will get,
\[\Rightarrow ka\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab} \right)=\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)kc\]
\[\Rightarrow a\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab} \right)=c\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)\]
\[\Rightarrow \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2b}=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2b}\]
\[\Rightarrow {{a}^{2}}+{{b}^{2}}-{{c}^{2}}={{b}^{2}}+{{c}^{2}}-{{a}^{2}}\]
\[\Rightarrow 2{{a}^{2}}=2{{c}^{2}}\]
\[\Rightarrow {{a}^{2}}={{c}^{2}}\]
\[\Rightarrow a=c\]
Hence, the option (c) is the right answer.
Note: The above question can also be solved by an alternate method as shown below:
\[2\cos A=\sin B\operatorname{cosec}C\]
Now, we will write cosec C in terms of sin C with the help of the following relation:
\[\operatorname{cosec}C=\dfrac{1}{\sin C}\]
Thus, we will get the following equation:
\[2\cos A=\dfrac{\sin B}{\sin C}\]
Now, we know that,
\[\dfrac{\sin B}{b}=\dfrac{\sin C}{c}\]
\[\Rightarrow \dfrac{\sin B}{\sin C}=\dfrac{b}{c}\]
Thus, we will get the following equation,
\[\Rightarrow 2\cos A=\dfrac{b}{c}\]
Now, we will use the formula of cos A in the above equation which is shown below:
\[\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}\]
Thus, we will get,
\[\Rightarrow 2\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)=\dfrac{b}{c}\]
\[\Rightarrow \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{bc}=\dfrac{b}{c}\]
\[\Rightarrow {{b}^{2}}+{{c}^{2}}-{{a}^{2}}={{b}^{2}}\]
\[\Rightarrow {{c}^{2}}-{{a}^{2}}=0\]
\[\Rightarrow {{c}^{2}}={{a}^{2}}\]
\[\Rightarrow c=a\]
Complete step-by-step answer:
To start with, we are given in the question that,
\[2\cos A=\sin B\operatorname{cosec}C.....\left( i \right)\]
Now, we know that, \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }.\] Thus, applying this formula in (i), we will get,
\[\Rightarrow 2\cos A=\dfrac{\sin B}{\sin C}\]
\[\Rightarrow 2\cos A\sin C=\sin B\]
\[\Rightarrow \sin B=2\cos A\sin C.....\left( ii \right)\]
Now, we will draw a triangle ABC.
Now, we know that the sum of all the angles in the triangle is \[{{180}^{o}}.\] Thus, we will get,
\[A+B+C={{180}^{o}}\]
\[\Rightarrow A+C={{180}^{o}}-B\]
\[\Rightarrow B={{180}^{o}}-\left( A+C \right).....\left( iii \right)\]
Now, we will apply sine on both sides. Thus, we will get,
\[\Rightarrow \sin B=\sin \left[ {{180}^{o}}-\left( A+C \right) \right]\]
We know that, \[\sin \left( {{180}^{o}}-\theta \right)=\sin \theta ,\] so we will get,
\[\Rightarrow \sin B=\sin \left( A+C \right)....\left( iv \right)\]
From (ii) and (iv), we will get,
\[\Rightarrow \sin \left( A+C \right)=2\cos A\sin C\]
Now, we will apply the following identity in the above equation,
\[\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y\]
Thus, we will get,
\[\Rightarrow \sin A\cos C+\cos A\sin C=2\cos A\sin C\]
\[\Rightarrow \sin A\cos C=\cos A\sin C.....\left( v \right)\]
Now, we know that,
\[\dfrac{\sin A}{a}=\dfrac{\sin C}{c}=k\]
Also,
\[\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}\]
\[\cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}\]
Thus, we will put these values in equation (v). After doing this, we will get,
\[\Rightarrow ka\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab} \right)=\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)kc\]
\[\Rightarrow a\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab} \right)=c\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)\]
\[\Rightarrow \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2b}=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2b}\]
\[\Rightarrow {{a}^{2}}+{{b}^{2}}-{{c}^{2}}={{b}^{2}}+{{c}^{2}}-{{a}^{2}}\]
\[\Rightarrow 2{{a}^{2}}=2{{c}^{2}}\]
\[\Rightarrow {{a}^{2}}={{c}^{2}}\]
\[\Rightarrow a=c\]
Hence, the option (c) is the right answer.
Note: The above question can also be solved by an alternate method as shown below:
\[2\cos A=\sin B\operatorname{cosec}C\]
Now, we will write cosec C in terms of sin C with the help of the following relation:
\[\operatorname{cosec}C=\dfrac{1}{\sin C}\]
Thus, we will get the following equation:
\[2\cos A=\dfrac{\sin B}{\sin C}\]
Now, we know that,
\[\dfrac{\sin B}{b}=\dfrac{\sin C}{c}\]
\[\Rightarrow \dfrac{\sin B}{\sin C}=\dfrac{b}{c}\]
Thus, we will get the following equation,
\[\Rightarrow 2\cos A=\dfrac{b}{c}\]
Now, we will use the formula of cos A in the above equation which is shown below:
\[\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}\]
Thus, we will get,
\[\Rightarrow 2\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)=\dfrac{b}{c}\]
\[\Rightarrow \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{bc}=\dfrac{b}{c}\]
\[\Rightarrow {{b}^{2}}+{{c}^{2}}-{{a}^{2}}={{b}^{2}}\]
\[\Rightarrow {{c}^{2}}-{{a}^{2}}=0\]
\[\Rightarrow {{c}^{2}}={{a}^{2}}\]
\[\Rightarrow c=a\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

