
If $ img \left( \dfrac{z-1}{2z+1} \right)=-4 $ , then the locus of $ z $ is
A. an ellipse
B. a parabola
C. a straight line
D. a circle
Answer
489.3k+ views
Hint: We first assume the complex number $ z=a+ib $ . We find the simplified form of the expression $ \dfrac{z-1}{2z+1} $ . We rationalise it and find the argument of the complex form. We take the equation and equate it with the general form of circle to find the solution.
Complete step-by-step answer:
Let us assume the complex number $ z=a+ib $ where $ a,b\in \mathbb{R} $ . The argument for $ z=a+ib $ can be denoted as $ {{\tan }^{-1}}\left( \dfrac{b}{a} \right) $ .
The function $ \dfrac{z-1}{2z+1} $ becomes $ \dfrac{z-1}{2z+1}=\dfrac{a+ib-1}{2\left( a+ib \right)+1}=\dfrac{\left( a-1 \right)+ib}{\left( 2a+1 \right)+2ib} $ .
We first apply the rationalisation of complex numbers for $ \dfrac{\left( a-1 \right)+ib}{\left( 2a+1 \right)+2ib} $ .
We multiply $ \left( 2a+1 \right)-2ib $ to both the numerator and denominator of the fraction.
So, \[\dfrac{\left( a-1 \right)+ib}{\left( 2a+1 \right)+2ib}\times \dfrac{\left( 2a+1 \right)-2ib}{\left( 2a+1 \right)-2ib}=\dfrac{\left( a-1 \right)\left( 2a+1 \right)-2{{i}^{2}}{{b}^{2}}-ib\left( 2a-2-2a-1 \right)}{{{\left( 2a+1 \right)}^{2}}-4{{i}^{2}}{{b}^{2}}}\] .
We used the theorem of \[\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}\] .
\[\begin{align}
& \dfrac{\left( a-1 \right)+ib}{\left( 2a+1 \right)+2ib} \\
& =\dfrac{\left( a-1 \right)\left( 2a+1 \right)-2{{i}^{2}}{{b}^{2}}-ib\left( 2a-2-2a-1 \right)}{{{\left( 2a+1 \right)}^{2}}-4{{i}^{2}}{{b}^{2}}} \\
& =\dfrac{\left( a-1 \right)\left( 2a+1 \right)+2{{b}^{2}}}{4{{a}^{2}}+4a+1+4{{b}^{2}}}+i\dfrac{3b}{4{{a}^{2}}+4a+1+4{{b}^{2}}} \\
\end{align}\]
Therefore,
\[\begin{align}
& img \left( \dfrac{z-1}{2z+1} \right)=-4 \\
& \Rightarrow img \left( \dfrac{\left( a-1 \right)\left( 2a+1 \right)+2{{b}^{2}}}{4{{a}^{2}}+4a+1+4{{b}^{2}}}+i\dfrac{3b}{4{{a}^{2}}+4a+1+4{{b}^{2}}} \right)=-4 \\
& \Rightarrow \dfrac{3b}{4{{a}^{2}}+4a+1+4{{b}^{2}}}=-4 \\
\end{align}\]
This gives
\[\begin{align}
& \dfrac{3b}{4{{a}^{2}}+4a+1+4{{b}^{2}}}=-4 \\
& \Rightarrow 16{{a}^{2}}+16a+4+16{{b}^{2}}+3b=0 \\
\end{align}\]
This is an equation of circle of
\[\begin{align}
& 16{{a}^{2}}+16a+4+16{{b}^{2}}+3b=0 \\
& \Rightarrow 4{{\left( 2a+1 \right)}^{2}}+{{\left( 4b+\dfrac{3}{8} \right)}^{2}}={{\left( \dfrac{3}{8} \right)}^{2}} \\
& \Rightarrow {{\left( a+\dfrac{1}{2} \right)}^{2}}+{{\left( b+\dfrac{3}{32} \right)}^{2}}={{\left( \dfrac{3}{32} \right)}^{2}} \\
\end{align}\] .
The circle is with centre $ \left( -\dfrac{1}{2},-\dfrac{3}{32} \right) $ and radius $ \dfrac{3}{32} $ as the general equation of circle is \[{{\left( x-m \right)}^{2}}+{{\left( y-n \right)}^{2}}={{r}^{2}}\] having centre $ \left( m,n \right) $ and radius $ r $ .
The correct option is D.
So, the correct answer is “Option D”.
Note: The integer power value of every even number on $ i $ will give the real number. Odd numbers of power value give back the imaginary part. The relation $ {{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1 $ can also be represented as the unit circle on the complex plane.
Complete step-by-step answer:
Let us assume the complex number $ z=a+ib $ where $ a,b\in \mathbb{R} $ . The argument for $ z=a+ib $ can be denoted as $ {{\tan }^{-1}}\left( \dfrac{b}{a} \right) $ .
The function $ \dfrac{z-1}{2z+1} $ becomes $ \dfrac{z-1}{2z+1}=\dfrac{a+ib-1}{2\left( a+ib \right)+1}=\dfrac{\left( a-1 \right)+ib}{\left( 2a+1 \right)+2ib} $ .
We first apply the rationalisation of complex numbers for $ \dfrac{\left( a-1 \right)+ib}{\left( 2a+1 \right)+2ib} $ .
We multiply $ \left( 2a+1 \right)-2ib $ to both the numerator and denominator of the fraction.
So, \[\dfrac{\left( a-1 \right)+ib}{\left( 2a+1 \right)+2ib}\times \dfrac{\left( 2a+1 \right)-2ib}{\left( 2a+1 \right)-2ib}=\dfrac{\left( a-1 \right)\left( 2a+1 \right)-2{{i}^{2}}{{b}^{2}}-ib\left( 2a-2-2a-1 \right)}{{{\left( 2a+1 \right)}^{2}}-4{{i}^{2}}{{b}^{2}}}\] .
We used the theorem of \[\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}\] .
\[\begin{align}
& \dfrac{\left( a-1 \right)+ib}{\left( 2a+1 \right)+2ib} \\
& =\dfrac{\left( a-1 \right)\left( 2a+1 \right)-2{{i}^{2}}{{b}^{2}}-ib\left( 2a-2-2a-1 \right)}{{{\left( 2a+1 \right)}^{2}}-4{{i}^{2}}{{b}^{2}}} \\
& =\dfrac{\left( a-1 \right)\left( 2a+1 \right)+2{{b}^{2}}}{4{{a}^{2}}+4a+1+4{{b}^{2}}}+i\dfrac{3b}{4{{a}^{2}}+4a+1+4{{b}^{2}}} \\
\end{align}\]
Therefore,
\[\begin{align}
& img \left( \dfrac{z-1}{2z+1} \right)=-4 \\
& \Rightarrow img \left( \dfrac{\left( a-1 \right)\left( 2a+1 \right)+2{{b}^{2}}}{4{{a}^{2}}+4a+1+4{{b}^{2}}}+i\dfrac{3b}{4{{a}^{2}}+4a+1+4{{b}^{2}}} \right)=-4 \\
& \Rightarrow \dfrac{3b}{4{{a}^{2}}+4a+1+4{{b}^{2}}}=-4 \\
\end{align}\]
This gives
\[\begin{align}
& \dfrac{3b}{4{{a}^{2}}+4a+1+4{{b}^{2}}}=-4 \\
& \Rightarrow 16{{a}^{2}}+16a+4+16{{b}^{2}}+3b=0 \\
\end{align}\]
This is an equation of circle of
\[\begin{align}
& 16{{a}^{2}}+16a+4+16{{b}^{2}}+3b=0 \\
& \Rightarrow 4{{\left( 2a+1 \right)}^{2}}+{{\left( 4b+\dfrac{3}{8} \right)}^{2}}={{\left( \dfrac{3}{8} \right)}^{2}} \\
& \Rightarrow {{\left( a+\dfrac{1}{2} \right)}^{2}}+{{\left( b+\dfrac{3}{32} \right)}^{2}}={{\left( \dfrac{3}{32} \right)}^{2}} \\
\end{align}\] .
The circle is with centre $ \left( -\dfrac{1}{2},-\dfrac{3}{32} \right) $ and radius $ \dfrac{3}{32} $ as the general equation of circle is \[{{\left( x-m \right)}^{2}}+{{\left( y-n \right)}^{2}}={{r}^{2}}\] having centre $ \left( m,n \right) $ and radius $ r $ .
The correct option is D.
So, the correct answer is “Option D”.
Note: The integer power value of every even number on $ i $ will give the real number. Odd numbers of power value give back the imaginary part. The relation $ {{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1 $ can also be represented as the unit circle on the complex plane.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

