
If I is a unit matrix of order 10, then the determinant of I is equal to
A) 10
B) 1
C) \[\dfrac{1}{{10}}\]
D) 9
Answer
588k+ views
Hint: Here, the given matrix is of order 10 and is a unit matrix. As unity refers to 1, the determinant of the unit matrix in any order is 1, this can be shown for different orders.
Order of a matrix refers to its number of rows and columns.
In a unit matrix the all the members in diagonal are 1 and the rest are zero
Complete step-by-step answer:
Calculating determinant for unit matrix I of various orders:
I of order 1; [1] = 1
I of order 2 ();
$\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right|$
$\left| {{I_2}} \right| = 1$
I of order 3 ();
$\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right|$
$\left| {{I_3}} \right| = 1(1 \times 1 - 0)$
$\left| {{I_3}} \right| = 1$
I of order 4 ();
$\left[ {\begin{array}{*{20}{c}}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0 \\
0&0&0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0 \\
0&0&0&1
\end{array}} \right|$
$\left| {{I_4}} \right| = 1\left| {\begin{array}{*{20}{c}}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0
\end{array}} \right|$
$\left| {{I_4}} \right| = 1\left| {{I_3}} \right|$
$\left| {{I_4}} \right| = 1$
Therefore, it can be seen that every order of unit matrix gives determinant 1.
Thus, determinant of unit matrix of order 10 is also 1 and it can be represented as:
\[\left[ {\begin{array}{*{20}{c}}
1&0&0&0&0&0&0&0&0&0 \\
0&1&0&0&0&0&0&0&0&0 \\
1&0&1&0&0&0&0&0&0&0 \\
1&0&0&1&0&0&0&0&0&0 \\
1&0&0&0&1&0&0&0&0&0 \\
1&0&0&0&0&1&0&0&0&0 \\
1&0&0&0&0&0&1&0&0&0 \\
1&0&0&0&0&0&0&1&0&0 \\
1&0&0&0&0&0&0&0&1&0 \\
1&0&0&0&0&0&0&0&0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0&0&0&0&0&0&0&0&0 \\
0&1&0&0&0&0&0&0&0&0 \\
1&0&1&0&0&0&0&0&0&0 \\
1&0&0&1&0&0&0&0&0&0 \\
1&0&0&0&1&0&0&0&0&0 \\
1&0&0&0&0&1&0&0&0&0 \\
1&0&0&0&0&0&1&0&0&0 \\
1&0&0&0&0&0&0&1&0&0 \\
1&0&0&0&0&0&0&0&1&0 \\
1&0&0&0&0&0&0&0&0&1
\end{array}} \right|\]
$\left| {{I_{10}}} \right| = 1$
So, the correct answer is “Option B”.
Note: Unit matrix is also called as Identity matrix
Order of matrix can also be represented as the product of number of rows and columns like (10 X 10)
Matrix is written inside brackets ‘[]’ where as the determinants is denoted by bars
Determinant for a 3 X 3 matrix can be calculated as:
$A = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|$
$|A| = {\text{ }}a(ei - fh) - b{\text{ }}(di - fg){\text{ }} + {\text{ }}c{\text{ }}(dh - eg)$
Order of a matrix refers to its number of rows and columns.
In a unit matrix the all the members in diagonal are 1 and the rest are zero
Complete step-by-step answer:
Calculating determinant for unit matrix I of various orders:
I of order 1; [1] = 1
I of order 2 ();
$\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right|$
$\left| {{I_2}} \right| = 1$
I of order 3 ();
$\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right|$
$\left| {{I_3}} \right| = 1(1 \times 1 - 0)$
$\left| {{I_3}} \right| = 1$
I of order 4 ();
$\left[ {\begin{array}{*{20}{c}}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0 \\
0&0&0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0 \\
0&0&0&1
\end{array}} \right|$
$\left| {{I_4}} \right| = 1\left| {\begin{array}{*{20}{c}}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0
\end{array}} \right|$
$\left| {{I_4}} \right| = 1\left| {{I_3}} \right|$
$\left| {{I_4}} \right| = 1$
Therefore, it can be seen that every order of unit matrix gives determinant 1.
Thus, determinant of unit matrix of order 10 is also 1 and it can be represented as:
\[\left[ {\begin{array}{*{20}{c}}
1&0&0&0&0&0&0&0&0&0 \\
0&1&0&0&0&0&0&0&0&0 \\
1&0&1&0&0&0&0&0&0&0 \\
1&0&0&1&0&0&0&0&0&0 \\
1&0&0&0&1&0&0&0&0&0 \\
1&0&0&0&0&1&0&0&0&0 \\
1&0&0&0&0&0&1&0&0&0 \\
1&0&0&0&0&0&0&1&0&0 \\
1&0&0&0&0&0&0&0&1&0 \\
1&0&0&0&0&0&0&0&0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0&0&0&0&0&0&0&0&0 \\
0&1&0&0&0&0&0&0&0&0 \\
1&0&1&0&0&0&0&0&0&0 \\
1&0&0&1&0&0&0&0&0&0 \\
1&0&0&0&1&0&0&0&0&0 \\
1&0&0&0&0&1&0&0&0&0 \\
1&0&0&0&0&0&1&0&0&0 \\
1&0&0&0&0&0&0&1&0&0 \\
1&0&0&0&0&0&0&0&1&0 \\
1&0&0&0&0&0&0&0&0&1
\end{array}} \right|\]
$\left| {{I_{10}}} \right| = 1$
So, the correct answer is “Option B”.
Note: Unit matrix is also called as Identity matrix
Order of matrix can also be represented as the product of number of rows and columns like (10 X 10)
Matrix is written inside brackets ‘[]’ where as the determinants is denoted by bars
Determinant for a 3 X 3 matrix can be calculated as:
$A = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|$
$|A| = {\text{ }}a(ei - fh) - b{\text{ }}(di - fg){\text{ }} + {\text{ }}c{\text{ }}(dh - eg)$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

