
If I is a unit matrix of order 10, then the determinant of I is equal to
A) 10
B) 1
C) \[\dfrac{1}{{10}}\]
D) 9
Answer
573k+ views
Hint: Here, the given matrix is of order 10 and is a unit matrix. As unity refers to 1, the determinant of the unit matrix in any order is 1, this can be shown for different orders.
Order of a matrix refers to its number of rows and columns.
In a unit matrix the all the members in diagonal are 1 and the rest are zero
Complete step-by-step answer:
Calculating determinant for unit matrix I of various orders:
I of order 1; [1] = 1
I of order 2 ();
$\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right|$
$\left| {{I_2}} \right| = 1$
I of order 3 ();
$\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right|$
$\left| {{I_3}} \right| = 1(1 \times 1 - 0)$
$\left| {{I_3}} \right| = 1$
I of order 4 ();
$\left[ {\begin{array}{*{20}{c}}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0 \\
0&0&0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0 \\
0&0&0&1
\end{array}} \right|$
$\left| {{I_4}} \right| = 1\left| {\begin{array}{*{20}{c}}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0
\end{array}} \right|$
$\left| {{I_4}} \right| = 1\left| {{I_3}} \right|$
$\left| {{I_4}} \right| = 1$
Therefore, it can be seen that every order of unit matrix gives determinant 1.
Thus, determinant of unit matrix of order 10 is also 1 and it can be represented as:
\[\left[ {\begin{array}{*{20}{c}}
1&0&0&0&0&0&0&0&0&0 \\
0&1&0&0&0&0&0&0&0&0 \\
1&0&1&0&0&0&0&0&0&0 \\
1&0&0&1&0&0&0&0&0&0 \\
1&0&0&0&1&0&0&0&0&0 \\
1&0&0&0&0&1&0&0&0&0 \\
1&0&0&0&0&0&1&0&0&0 \\
1&0&0&0&0&0&0&1&0&0 \\
1&0&0&0&0&0&0&0&1&0 \\
1&0&0&0&0&0&0&0&0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0&0&0&0&0&0&0&0&0 \\
0&1&0&0&0&0&0&0&0&0 \\
1&0&1&0&0&0&0&0&0&0 \\
1&0&0&1&0&0&0&0&0&0 \\
1&0&0&0&1&0&0&0&0&0 \\
1&0&0&0&0&1&0&0&0&0 \\
1&0&0&0&0&0&1&0&0&0 \\
1&0&0&0&0&0&0&1&0&0 \\
1&0&0&0&0&0&0&0&1&0 \\
1&0&0&0&0&0&0&0&0&1
\end{array}} \right|\]
$\left| {{I_{10}}} \right| = 1$
So, the correct answer is “Option B”.
Note: Unit matrix is also called as Identity matrix
Order of matrix can also be represented as the product of number of rows and columns like (10 X 10)
Matrix is written inside brackets ‘[]’ where as the determinants is denoted by bars
Determinant for a 3 X 3 matrix can be calculated as:
$A = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|$
$|A| = {\text{ }}a(ei - fh) - b{\text{ }}(di - fg){\text{ }} + {\text{ }}c{\text{ }}(dh - eg)$
Order of a matrix refers to its number of rows and columns.
In a unit matrix the all the members in diagonal are 1 and the rest are zero
Complete step-by-step answer:
Calculating determinant for unit matrix I of various orders:
I of order 1; [1] = 1
I of order 2 ();
$\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right|$
$\left| {{I_2}} \right| = 1$
I of order 3 ();
$\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right|$
$\left| {{I_3}} \right| = 1(1 \times 1 - 0)$
$\left| {{I_3}} \right| = 1$
I of order 4 ();
$\left[ {\begin{array}{*{20}{c}}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0 \\
0&0&0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0 \\
0&0&0&1
\end{array}} \right|$
$\left| {{I_4}} \right| = 1\left| {\begin{array}{*{20}{c}}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0
\end{array}} \right|$
$\left| {{I_4}} \right| = 1\left| {{I_3}} \right|$
$\left| {{I_4}} \right| = 1$
Therefore, it can be seen that every order of unit matrix gives determinant 1.
Thus, determinant of unit matrix of order 10 is also 1 and it can be represented as:
\[\left[ {\begin{array}{*{20}{c}}
1&0&0&0&0&0&0&0&0&0 \\
0&1&0&0&0&0&0&0&0&0 \\
1&0&1&0&0&0&0&0&0&0 \\
1&0&0&1&0&0&0&0&0&0 \\
1&0&0&0&1&0&0&0&0&0 \\
1&0&0&0&0&1&0&0&0&0 \\
1&0&0&0&0&0&1&0&0&0 \\
1&0&0&0&0&0&0&1&0&0 \\
1&0&0&0&0&0&0&0&1&0 \\
1&0&0&0&0&0&0&0&0&1
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
1&0&0&0&0&0&0&0&0&0 \\
0&1&0&0&0&0&0&0&0&0 \\
1&0&1&0&0&0&0&0&0&0 \\
1&0&0&1&0&0&0&0&0&0 \\
1&0&0&0&1&0&0&0&0&0 \\
1&0&0&0&0&1&0&0&0&0 \\
1&0&0&0&0&0&1&0&0&0 \\
1&0&0&0&0&0&0&1&0&0 \\
1&0&0&0&0&0&0&0&1&0 \\
1&0&0&0&0&0&0&0&0&1
\end{array}} \right|\]
$\left| {{I_{10}}} \right| = 1$
So, the correct answer is “Option B”.
Note: Unit matrix is also called as Identity matrix
Order of matrix can also be represented as the product of number of rows and columns like (10 X 10)
Matrix is written inside brackets ‘[]’ where as the determinants is denoted by bars
Determinant for a 3 X 3 matrix can be calculated as:
$A = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right] = \left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|$
$|A| = {\text{ }}a(ei - fh) - b{\text{ }}(di - fg){\text{ }} + {\text{ }}c{\text{ }}(dh - eg)$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

