
If I= $\int\limits_{0}^{2}{{{e}^{{{x}^{4}}}}(x-a)dx}=0$ then a lies in the interval
A) (0, 2)
B) (-1, 0)
C) (2,3)
D) (-2,-1)
Answer
483.9k+ views
Hint:
Separate the integration terms in $\int\limits_{0}^{2}{{{e}^{{{x}^{4}}}}(x-a)dx}=0$ and solve the equation.
Formula used:
$\int\limits_{a}^{b}{}f(x)dx=\left[ F(x) \right]_{a}^{b}=F(b)-F(a)$
Complete step by step solution:
We are given that I= $\int\limits_{0}^{2}{{{e}^{{{x}^{4}}}}(x-a)dx}=0$
$\Rightarrow $ $\int\limits_{0}^{2}{({{e}^{{{x}^{4}}}}\times x-{{e}^{{{x}^{4}}}}\times a)}dx$ = 0
$\Rightarrow $$\int\limits_{0}^{2}{x{{e}^{{{x}^{4}}}}dx-\int\limits_{0}^{2}{a{{e}^{{{x}^{4}}}}dx}}$=0
$\Rightarrow $$\int\limits_{0}^{2}{x{{e}^{{{x}^{4}}}}dx}$=$\int\limits_{0}^{2}{a{{e}^{{{x}^{4}}}}dx}$
These two integration can be same only if a =x
We know that x lies in the interval (0, 2) as given integration is the definite integration lies in the interval of (0,2)
Hence, the interval of ‘a’ also lies between (0, 2).
Additional Information:
In mathematics, an integral assigns numbers to functions in a way that can describe displacement, area, volume, and other concepts that arise by combining infinitesimal data. Integration is one of the two main operations of calculus; its inverse operation, differentiation, is the other. Given a function f of a real variable x and an interval [a, b] of the real line, the definite integral
$\int_{a}^{b}{f}(x)dx$
can be interpreted informally as the signed area of the region in the xy-plane that is bounded by the graph of f, the x-axis and the vertical lines x = a and x = b. The area above the x-axis adds to the total and that below the x-axis subtracts from the total.
$\int\limits_{a}^{b}{}f(x)dx=\left[ F(x) \right]_{a}^{b}=F(b)-F(a)$
Some of integral formulas are
\[\begin{align}
& \int \text{ }1\text{ }dx\text{ }=\text{ }x\text{ }+\text{ }C \\
& \int \text{ }a\text{ }dx\text{ }=\text{ }ax+\text{ }C \\
& \int \text{ }{{x}^{n~}}dx\text{ }=\text{ }\left( \left( {{x}^{n+1}} \right)/\left( n+1 \right) \right)+C\text{ };\text{ }n\ne 1 \\
& \int \text{ }sin\text{ }x\text{ }dx\text{ }=\text{ }\text{ }cos\text{ }x\text{ }+\text{ }C \\
& \int \text{ }cos\text{ }x\text{ }dx\text{ }=\text{ }sin\text{ }x\text{ }+\text{ }C \\
& \int \text{ }se{{c}^{2~}}dx\text{ }=\text{ }tan\text{ }x\text{ }+\text{ }C \\
& \int \text{ }cs{{c}^{2~}}dx\text{ }=\text{ }-cot\text{ }x\text{ }+\text{ }C \\
& \int \text{ }sec\text{ }x\text{ }\left( tan\text{ }x \right)\text{ }dx\text{ }=\text{ }sec\text{ }x\text{ }+\text{ }C \\
& \int \text{ }csc\text{ }x\text{ }\left( \text{ }cot\text{ }x \right)\text{ }dx\text{ }=\text{ }\text{ }csc\text{ }x\text{ }+\text{ }C \\
& \int \text{ }\left( 1/x \right)\text{ }dx\text{ }=\text{ }ln\text{ }\left| x \right|\text{ }+\text{ }C \\
& \int \text{ }{{e}^{x~}}dx\text{ }=~{{e}^{x}}+\text{ }C \\
& \int \text{ }{{a}^{x~}}dx\text{ }=\text{ }\left( {{a}^{x}}/ln\text{ }a \right)\text{ }+\text{ }C\text{ };\text{ }a>0,~~a\ne 1 \\
\end{align}\]
Note:
The knowledge about integration (definite integral and indefinite integral) is important for students to answer such questions.
Separate the integration terms in $\int\limits_{0}^{2}{{{e}^{{{x}^{4}}}}(x-a)dx}=0$ and solve the equation.
Formula used:
$\int\limits_{a}^{b}{}f(x)dx=\left[ F(x) \right]_{a}^{b}=F(b)-F(a)$
Complete step by step solution:
We are given that I= $\int\limits_{0}^{2}{{{e}^{{{x}^{4}}}}(x-a)dx}=0$
$\Rightarrow $ $\int\limits_{0}^{2}{({{e}^{{{x}^{4}}}}\times x-{{e}^{{{x}^{4}}}}\times a)}dx$ = 0
$\Rightarrow $$\int\limits_{0}^{2}{x{{e}^{{{x}^{4}}}}dx-\int\limits_{0}^{2}{a{{e}^{{{x}^{4}}}}dx}}$=0
$\Rightarrow $$\int\limits_{0}^{2}{x{{e}^{{{x}^{4}}}}dx}$=$\int\limits_{0}^{2}{a{{e}^{{{x}^{4}}}}dx}$
These two integration can be same only if a =x
We know that x lies in the interval (0, 2) as given integration is the definite integration lies in the interval of (0,2)
Hence, the interval of ‘a’ also lies between (0, 2).
Additional Information:
In mathematics, an integral assigns numbers to functions in a way that can describe displacement, area, volume, and other concepts that arise by combining infinitesimal data. Integration is one of the two main operations of calculus; its inverse operation, differentiation, is the other. Given a function f of a real variable x and an interval [a, b] of the real line, the definite integral
$\int_{a}^{b}{f}(x)dx$
can be interpreted informally as the signed area of the region in the xy-plane that is bounded by the graph of f, the x-axis and the vertical lines x = a and x = b. The area above the x-axis adds to the total and that below the x-axis subtracts from the total.
$\int\limits_{a}^{b}{}f(x)dx=\left[ F(x) \right]_{a}^{b}=F(b)-F(a)$
Some of integral formulas are
\[\begin{align}
& \int \text{ }1\text{ }dx\text{ }=\text{ }x\text{ }+\text{ }C \\
& \int \text{ }a\text{ }dx\text{ }=\text{ }ax+\text{ }C \\
& \int \text{ }{{x}^{n~}}dx\text{ }=\text{ }\left( \left( {{x}^{n+1}} \right)/\left( n+1 \right) \right)+C\text{ };\text{ }n\ne 1 \\
& \int \text{ }sin\text{ }x\text{ }dx\text{ }=\text{ }\text{ }cos\text{ }x\text{ }+\text{ }C \\
& \int \text{ }cos\text{ }x\text{ }dx\text{ }=\text{ }sin\text{ }x\text{ }+\text{ }C \\
& \int \text{ }se{{c}^{2~}}dx\text{ }=\text{ }tan\text{ }x\text{ }+\text{ }C \\
& \int \text{ }cs{{c}^{2~}}dx\text{ }=\text{ }-cot\text{ }x\text{ }+\text{ }C \\
& \int \text{ }sec\text{ }x\text{ }\left( tan\text{ }x \right)\text{ }dx\text{ }=\text{ }sec\text{ }x\text{ }+\text{ }C \\
& \int \text{ }csc\text{ }x\text{ }\left( \text{ }cot\text{ }x \right)\text{ }dx\text{ }=\text{ }\text{ }csc\text{ }x\text{ }+\text{ }C \\
& \int \text{ }\left( 1/x \right)\text{ }dx\text{ }=\text{ }ln\text{ }\left| x \right|\text{ }+\text{ }C \\
& \int \text{ }{{e}^{x~}}dx\text{ }=~{{e}^{x}}+\text{ }C \\
& \int \text{ }{{a}^{x~}}dx\text{ }=\text{ }\left( {{a}^{x}}/ln\text{ }a \right)\text{ }+\text{ }C\text{ };\text{ }a>0,~~a\ne 1 \\
\end{align}\]
Note:
The knowledge about integration (definite integral and indefinite integral) is important for students to answer such questions.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
