
If $\hat{i},\hat{j},\hat{k}$ is an orthonormal system of vectors, $\vec{a}$ is a vector and $\vec{a}\times \hat{i}+2\vec{a}-5\hat{j}=\bar{0}$ then $\vec{a}=$
\[\begin{align}
& A.2\hat{j}+\hat{k} \\
& B.2\hat{i}-\hat{k} \\
& C.2\hat{i}-\hat{j} \\
& D.\text{None of these} \\
\end{align}\]
Answer
510.3k+ views
Hint: Here, the orthogonal system of vectors means all 3 vectors are mutually perpendicular to each other. Whenever there is some unknown vector given in any such question, then assume it and represent it in any arbitrary variables with the 3 coordinate axes. Now, put this unknown vector in the given condition of the question. By doing some comparisons we will get the unknown variables and the required vector.
Complete step-by-step solution:
Now, let us assume:
\[\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\]
And the given condition is:
\[\vec{a}\times \hat{i}+2\vec{a}-5\hat{j}=\bar{0}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, compute:
\[\begin{align}
& \vec{a}\times \hat{i}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
1 & 0 & 0 \\
\end{matrix} \right| \\
& \vec{a}\times \hat{i}=\left( {{a}_{2}}\times 0-0\times {{a}_{3}} \right)\hat{i}-\left( {{a}_{1}}\times 0-1\times {{a}_{3}} \right)\hat{j}+\left( {{a}_{1}}\times 0-1\times {{a}_{2}} \right) \\
& \vec{a}\times \hat{i}={{a}_{3}}\hat{j}-{{a}_{2}}\hat{k} \\
\end{align}\]
Now from expression (i) we have
\[\begin{align}
& \vec{a}\times \hat{i}+2\vec{a}-5\hat{j}=\vec{0} \\
& \left( {{a}_{3}}\hat{j}-{{a}_{2}}\hat{k} \right)+2\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)-5\hat{j}=\vec{0} \\
& \left( 2{{a}_{1}} \right)\hat{i}+\left( {{a}_{3}}+2{{a}_{2}}-5 \right)\hat{j}+\left( 2{{a}_{3}}-{{a}_{2}} \right)\hat{k}=0\hat{i}+0\hat{j}+0\hat{k} \\
\end{align}\]
By comparing LHS and RHS, we have:
\[\begin{align}
& 2{{a}_{1}}=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
&\Rightarrow {{a}_{3}}+2{{a}_{2}}-5=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
&\Rightarrow 2{{a}_{3}}-{{a}_{2}}=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iv)} \\
\end{align}\]
From (ii) we have ${{a}_{1}}=0$
By multiplying 2 in equation (iv) we have:
\[4{{a}_{3}}-2{{a}_{2}}=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (v)}\]
Now, add equation (iii) and (v) we get:
\[\left( {{a}_{3}}+2{{a}_{2}}-5 \right)+\left( 4{{a}_{3}}-2{{a}_{2}} \right)=0\]
Now, cancelling $2{{a}_{2}}$from the equation=n, we get:
\[\begin{align}
& {{a}_{3}}+4{{a}_{3}}=5 \\
&\Rightarrow 5{{a}_{3}}=5 \\
&\Rightarrow {{a}_{3}}=1 \\
\end{align}\]
Hence, from equation (iv) put value of ${{a}_{3}}$
\[\begin{align}
& \therefore 2\times 1-{{a}_{2}}=0 \\
& \Rightarrow {{a}_{2}}=2 \\
\end{align}\]
Hence, we get ${{a}_{1}}=0,{{a}_{2}}=2,{{a}_{3}}=1$
\[\begin{align}
& \vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \\
& \Rightarrow 0+2\hat{j}+1\hat{k} \\
& \Rightarrow 2\hat{j}+\hat{k} \\
\end{align}\]
Therefore, option A is the correct answer.
Note: Don’t compare the given expression directly with the $\vec{0}$ first assume the value of $\vec{a}$ and then resolve into the form which contains the all 3 coordinate axis. After that, do comparison. The overall question is simple but focus should be more on the calculation part. As if there is some minor mistake in case of writing $\hat{i},\hat{j},\hat{k}$ then, we can mark the wrong option. (Given options are quite similar to each other).
Complete step-by-step solution:
Now, let us assume:
\[\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\]
And the given condition is:
\[\vec{a}\times \hat{i}+2\vec{a}-5\hat{j}=\bar{0}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, compute:
\[\begin{align}
& \vec{a}\times \hat{i}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
1 & 0 & 0 \\
\end{matrix} \right| \\
& \vec{a}\times \hat{i}=\left( {{a}_{2}}\times 0-0\times {{a}_{3}} \right)\hat{i}-\left( {{a}_{1}}\times 0-1\times {{a}_{3}} \right)\hat{j}+\left( {{a}_{1}}\times 0-1\times {{a}_{2}} \right) \\
& \vec{a}\times \hat{i}={{a}_{3}}\hat{j}-{{a}_{2}}\hat{k} \\
\end{align}\]
Now from expression (i) we have
\[\begin{align}
& \vec{a}\times \hat{i}+2\vec{a}-5\hat{j}=\vec{0} \\
& \left( {{a}_{3}}\hat{j}-{{a}_{2}}\hat{k} \right)+2\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)-5\hat{j}=\vec{0} \\
& \left( 2{{a}_{1}} \right)\hat{i}+\left( {{a}_{3}}+2{{a}_{2}}-5 \right)\hat{j}+\left( 2{{a}_{3}}-{{a}_{2}} \right)\hat{k}=0\hat{i}+0\hat{j}+0\hat{k} \\
\end{align}\]
By comparing LHS and RHS, we have:
\[\begin{align}
& 2{{a}_{1}}=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
&\Rightarrow {{a}_{3}}+2{{a}_{2}}-5=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
&\Rightarrow 2{{a}_{3}}-{{a}_{2}}=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iv)} \\
\end{align}\]
From (ii) we have ${{a}_{1}}=0$
By multiplying 2 in equation (iv) we have:
\[4{{a}_{3}}-2{{a}_{2}}=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (v)}\]
Now, add equation (iii) and (v) we get:
\[\left( {{a}_{3}}+2{{a}_{2}}-5 \right)+\left( 4{{a}_{3}}-2{{a}_{2}} \right)=0\]
Now, cancelling $2{{a}_{2}}$from the equation=n, we get:
\[\begin{align}
& {{a}_{3}}+4{{a}_{3}}=5 \\
&\Rightarrow 5{{a}_{3}}=5 \\
&\Rightarrow {{a}_{3}}=1 \\
\end{align}\]
Hence, from equation (iv) put value of ${{a}_{3}}$
\[\begin{align}
& \therefore 2\times 1-{{a}_{2}}=0 \\
& \Rightarrow {{a}_{2}}=2 \\
\end{align}\]
Hence, we get ${{a}_{1}}=0,{{a}_{2}}=2,{{a}_{3}}=1$
\[\begin{align}
& \vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \\
& \Rightarrow 0+2\hat{j}+1\hat{k} \\
& \Rightarrow 2\hat{j}+\hat{k} \\
\end{align}\]
Therefore, option A is the correct answer.
Note: Don’t compare the given expression directly with the $\vec{0}$ first assume the value of $\vec{a}$ and then resolve into the form which contains the all 3 coordinate axis. After that, do comparison. The overall question is simple but focus should be more on the calculation part. As if there is some minor mistake in case of writing $\hat{i},\hat{j},\hat{k}$ then, we can mark the wrong option. (Given options are quite similar to each other).
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Why is insulin not administered orally to a diabetic class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How do you convert from joules to electron volts class 12 physics CBSE

Define Vant Hoff factor How is it related to the degree class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE
