
If $\hat{i},\hat{j},\hat{k}$ is an orthonormal system of vectors, $\vec{a}$ is a vector and $\vec{a}\times \hat{i}+2\vec{a}-5\hat{j}=\bar{0}$ then $\vec{a}=$
\[\begin{align}
& A.2\hat{j}+\hat{k} \\
& B.2\hat{i}-\hat{k} \\
& C.2\hat{i}-\hat{j} \\
& D.\text{None of these} \\
\end{align}\]
Answer
588.3k+ views
Hint: Here, the orthogonal system of vectors means all 3 vectors are mutually perpendicular to each other. Whenever there is some unknown vector given in any such question, then assume it and represent it in any arbitrary variables with the 3 coordinate axes. Now, put this unknown vector in the given condition of the question. By doing some comparisons we will get the unknown variables and the required vector.
Complete step-by-step solution:
Now, let us assume:
\[\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\]
And the given condition is:
\[\vec{a}\times \hat{i}+2\vec{a}-5\hat{j}=\bar{0}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, compute:
\[\begin{align}
& \vec{a}\times \hat{i}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
1 & 0 & 0 \\
\end{matrix} \right| \\
& \vec{a}\times \hat{i}=\left( {{a}_{2}}\times 0-0\times {{a}_{3}} \right)\hat{i}-\left( {{a}_{1}}\times 0-1\times {{a}_{3}} \right)\hat{j}+\left( {{a}_{1}}\times 0-1\times {{a}_{2}} \right) \\
& \vec{a}\times \hat{i}={{a}_{3}}\hat{j}-{{a}_{2}}\hat{k} \\
\end{align}\]
Now from expression (i) we have
\[\begin{align}
& \vec{a}\times \hat{i}+2\vec{a}-5\hat{j}=\vec{0} \\
& \left( {{a}_{3}}\hat{j}-{{a}_{2}}\hat{k} \right)+2\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)-5\hat{j}=\vec{0} \\
& \left( 2{{a}_{1}} \right)\hat{i}+\left( {{a}_{3}}+2{{a}_{2}}-5 \right)\hat{j}+\left( 2{{a}_{3}}-{{a}_{2}} \right)\hat{k}=0\hat{i}+0\hat{j}+0\hat{k} \\
\end{align}\]
By comparing LHS and RHS, we have:
\[\begin{align}
& 2{{a}_{1}}=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
&\Rightarrow {{a}_{3}}+2{{a}_{2}}-5=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
&\Rightarrow 2{{a}_{3}}-{{a}_{2}}=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iv)} \\
\end{align}\]
From (ii) we have ${{a}_{1}}=0$
By multiplying 2 in equation (iv) we have:
\[4{{a}_{3}}-2{{a}_{2}}=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (v)}\]
Now, add equation (iii) and (v) we get:
\[\left( {{a}_{3}}+2{{a}_{2}}-5 \right)+\left( 4{{a}_{3}}-2{{a}_{2}} \right)=0\]
Now, cancelling $2{{a}_{2}}$from the equation=n, we get:
\[\begin{align}
& {{a}_{3}}+4{{a}_{3}}=5 \\
&\Rightarrow 5{{a}_{3}}=5 \\
&\Rightarrow {{a}_{3}}=1 \\
\end{align}\]
Hence, from equation (iv) put value of ${{a}_{3}}$
\[\begin{align}
& \therefore 2\times 1-{{a}_{2}}=0 \\
& \Rightarrow {{a}_{2}}=2 \\
\end{align}\]
Hence, we get ${{a}_{1}}=0,{{a}_{2}}=2,{{a}_{3}}=1$
\[\begin{align}
& \vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \\
& \Rightarrow 0+2\hat{j}+1\hat{k} \\
& \Rightarrow 2\hat{j}+\hat{k} \\
\end{align}\]
Therefore, option A is the correct answer.
Note: Don’t compare the given expression directly with the $\vec{0}$ first assume the value of $\vec{a}$ and then resolve into the form which contains the all 3 coordinate axis. After that, do comparison. The overall question is simple but focus should be more on the calculation part. As if there is some minor mistake in case of writing $\hat{i},\hat{j},\hat{k}$ then, we can mark the wrong option. (Given options are quite similar to each other).
Complete step-by-step solution:
Now, let us assume:
\[\vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\]
And the given condition is:
\[\vec{a}\times \hat{i}+2\vec{a}-5\hat{j}=\bar{0}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, compute:
\[\begin{align}
& \vec{a}\times \hat{i}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
1 & 0 & 0 \\
\end{matrix} \right| \\
& \vec{a}\times \hat{i}=\left( {{a}_{2}}\times 0-0\times {{a}_{3}} \right)\hat{i}-\left( {{a}_{1}}\times 0-1\times {{a}_{3}} \right)\hat{j}+\left( {{a}_{1}}\times 0-1\times {{a}_{2}} \right) \\
& \vec{a}\times \hat{i}={{a}_{3}}\hat{j}-{{a}_{2}}\hat{k} \\
\end{align}\]
Now from expression (i) we have
\[\begin{align}
& \vec{a}\times \hat{i}+2\vec{a}-5\hat{j}=\vec{0} \\
& \left( {{a}_{3}}\hat{j}-{{a}_{2}}\hat{k} \right)+2\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right)-5\hat{j}=\vec{0} \\
& \left( 2{{a}_{1}} \right)\hat{i}+\left( {{a}_{3}}+2{{a}_{2}}-5 \right)\hat{j}+\left( 2{{a}_{3}}-{{a}_{2}} \right)\hat{k}=0\hat{i}+0\hat{j}+0\hat{k} \\
\end{align}\]
By comparing LHS and RHS, we have:
\[\begin{align}
& 2{{a}_{1}}=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
&\Rightarrow {{a}_{3}}+2{{a}_{2}}-5=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
&\Rightarrow 2{{a}_{3}}-{{a}_{2}}=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iv)} \\
\end{align}\]
From (ii) we have ${{a}_{1}}=0$
By multiplying 2 in equation (iv) we have:
\[4{{a}_{3}}-2{{a}_{2}}=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (v)}\]
Now, add equation (iii) and (v) we get:
\[\left( {{a}_{3}}+2{{a}_{2}}-5 \right)+\left( 4{{a}_{3}}-2{{a}_{2}} \right)=0\]
Now, cancelling $2{{a}_{2}}$from the equation=n, we get:
\[\begin{align}
& {{a}_{3}}+4{{a}_{3}}=5 \\
&\Rightarrow 5{{a}_{3}}=5 \\
&\Rightarrow {{a}_{3}}=1 \\
\end{align}\]
Hence, from equation (iv) put value of ${{a}_{3}}$
\[\begin{align}
& \therefore 2\times 1-{{a}_{2}}=0 \\
& \Rightarrow {{a}_{2}}=2 \\
\end{align}\]
Hence, we get ${{a}_{1}}=0,{{a}_{2}}=2,{{a}_{3}}=1$
\[\begin{align}
& \vec{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \\
& \Rightarrow 0+2\hat{j}+1\hat{k} \\
& \Rightarrow 2\hat{j}+\hat{k} \\
\end{align}\]
Therefore, option A is the correct answer.
Note: Don’t compare the given expression directly with the $\vec{0}$ first assume the value of $\vec{a}$ and then resolve into the form which contains the all 3 coordinate axis. After that, do comparison. The overall question is simple but focus should be more on the calculation part. As if there is some minor mistake in case of writing $\hat{i},\hat{j},\hat{k}$ then, we can mark the wrong option. (Given options are quite similar to each other).
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

How many states of matter are there in total class 12 chemistry CBSE

