
If $ g\left( x \right) = x $ if $ x < 0 $, $ {x^2} $ if $ 0 \leqslant x \leqslant 1 $, and $ {x^3} $ if $ x > 1 $ . How do you show that g is continuous on all real numbers ? $ $
Answer
530.7k+ views
Hint: In the given question, we are required to find whether a function given to us is continuous or not. The problem involves concepts of continuity and differentiability and can be solved easily with the knowledge of conditions for a function to be continuous. In the question, we are given a piece by piece defined function. This means the behavior of the graph of the function changes for different intervals of x.
Complete step by step solution:
Let us consider a real number c, where $ c \in ( - \infty ,0) $ .
For $ x < 0 $, $ g\left( x \right) = x $ .
So, $ \mathop {\lim }\limits_{x \to c} g(x) = \mathop {\lim }\limits_{x \to c} x $
$ \Rightarrow \mathop {\lim }\limits_{x \to c} g(x) = c $
Also, $ g(c) = c $
Thus, $ \mathop {\lim }\limits_{x \to c} g(x) = g(c) = c $
Hence the given function g(x) is continuous on $ ( - \infty ,0) $ .
Now, evaluating limit at $ x = 0 $
$ \mathop {\lim }\limits_{x \to 0} g(x) = \mathop {\lim }\limits_{x \to 0} x = 0 $
Also, $ g(0) = 0 $
Thus, $ \mathop {\lim }\limits_{x \to 0} g(x) = g(0) = 0 $
Hence the given function g(x) is continuous at x equals zero.
Now let us consider a real number d, where $ d \in (0,1) $
$ \mathop {\lim }\limits_{x \to d} g(d) = \mathop {\lim }\limits_{x \to d} {x^2} $
Or, $ \mathop {\lim }\limits_{x \to d} g(d) = {d^2} $
Also, $ g(d) = {d^2} $
Thus, $ \mathop {\lim }\limits_{x \to d} g(d) = g(d) = {d^2} $
Hence the given function g(x) is continuous on \[(0,1)\].
For $ 0 \leqslant x \leqslant 1 $, $ g\left( x \right) = {x^2} $ .
So, evaluating limit at $ x = 1 $,
$ \mathop {\lim }\limits_{x \to 1} g(x) = \mathop {\lim }\limits_{x \to 1} {x^2} $
Also, $ g(1) = 1 $
Thus, $ \mathop {\lim }\limits_{x \to 1} g(x) = g(1) = 1 $
Hence the given function g(x) is continuous at x equals one.
Now, consider a real number e, $ e \in (1,\infty ) $
For $ x > 1 $, $ g\left( x \right) = {x^3} $ ,
$ \mathop {\lim }\limits_{x \to e} g(x) = \mathop {\lim }\limits_{x \to e} {x^3} $
Or, $ \mathop {\lim }\limits_{x \to e} g(x) = {e^3} $
Also, $ g(e) = {e^3} $
Thus, $ \mathop {\lim }\limits_{x \to e} g(x) = g(e) = {e^3} $
Thus the given function g(x) is continuous on $ (1,\infty ) $
Therefore, we conclude that the given function g(x) is continuous on all real numbers.
Note: A function is said to be continuous if the graph of the function does not have any empty spaces in between or can be drawn on a graph paper without lifting up the pencil or pen. Functions that are defined piecewise behave differently for different sets of values of x.
Complete step by step solution:
Let us consider a real number c, where $ c \in ( - \infty ,0) $ .
For $ x < 0 $, $ g\left( x \right) = x $ .
So, $ \mathop {\lim }\limits_{x \to c} g(x) = \mathop {\lim }\limits_{x \to c} x $
$ \Rightarrow \mathop {\lim }\limits_{x \to c} g(x) = c $
Also, $ g(c) = c $
Thus, $ \mathop {\lim }\limits_{x \to c} g(x) = g(c) = c $
Hence the given function g(x) is continuous on $ ( - \infty ,0) $ .
Now, evaluating limit at $ x = 0 $
$ \mathop {\lim }\limits_{x \to 0} g(x) = \mathop {\lim }\limits_{x \to 0} x = 0 $
Also, $ g(0) = 0 $
Thus, $ \mathop {\lim }\limits_{x \to 0} g(x) = g(0) = 0 $
Hence the given function g(x) is continuous at x equals zero.
Now let us consider a real number d, where $ d \in (0,1) $
$ \mathop {\lim }\limits_{x \to d} g(d) = \mathop {\lim }\limits_{x \to d} {x^2} $
Or, $ \mathop {\lim }\limits_{x \to d} g(d) = {d^2} $
Also, $ g(d) = {d^2} $
Thus, $ \mathop {\lim }\limits_{x \to d} g(d) = g(d) = {d^2} $
Hence the given function g(x) is continuous on \[(0,1)\].
For $ 0 \leqslant x \leqslant 1 $, $ g\left( x \right) = {x^2} $ .
So, evaluating limit at $ x = 1 $,
$ \mathop {\lim }\limits_{x \to 1} g(x) = \mathop {\lim }\limits_{x \to 1} {x^2} $
Also, $ g(1) = 1 $
Thus, $ \mathop {\lim }\limits_{x \to 1} g(x) = g(1) = 1 $
Hence the given function g(x) is continuous at x equals one.
Now, consider a real number e, $ e \in (1,\infty ) $
For $ x > 1 $, $ g\left( x \right) = {x^3} $ ,
$ \mathop {\lim }\limits_{x \to e} g(x) = \mathop {\lim }\limits_{x \to e} {x^3} $
Or, $ \mathop {\lim }\limits_{x \to e} g(x) = {e^3} $
Also, $ g(e) = {e^3} $
Thus, $ \mathop {\lim }\limits_{x \to e} g(x) = g(e) = {e^3} $
Thus the given function g(x) is continuous on $ (1,\infty ) $
Therefore, we conclude that the given function g(x) is continuous on all real numbers.
Note: A function is said to be continuous if the graph of the function does not have any empty spaces in between or can be drawn on a graph paper without lifting up the pencil or pen. Functions that are defined piecewise behave differently for different sets of values of x.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

