
if given series $\dfrac{1}{{{x_1}}},\dfrac{1}{{{x_2}}},.....,\dfrac{1}{{{x_n}}}$ (${x_i}$ $ \ne $ 0 for i = 1, 2, ……,n) be in A.P such that ${x_1}$ = 4 and ${x_{21}}$ = 20. If n is the least positive integer for which ${x_n}$ > 50, then $\sum\limits_{i = 1}^n {\left( {\dfrac{1}{{{x_i}}}} \right)} $ is equal to
A). 3
B). $\dfrac{{13}}{8}$
C). $\dfrac{{13}}{4}$
D). $\dfrac{1}{8}$
Answer
575.7k+ views
Hint:Before attempting this question one must have prior knowledge about A.P series and formula used in it and remember to use the formula of \[{x_n} = {x_1} + \left( {n - 1} \right)d\] for 21th term to find the common difference, use this information to approach the solution of the question.
Complete step-by-step solution:
According to the given information we have a A.P series i.e. \[\dfrac{1}{{{x_n}}},i = 1,2,3,...,n\] here ${x_1}$ = 4 and ${x_{21}}$ = 20
Now we have to find the common difference between the consecutive terms of this given A.P series
Using the formula of \[{x_n} = {x_1} + \left( {n - 1} \right)d\] to find the 21th term
\[\dfrac{1}{{{x_{21}}}} = \dfrac{1}{{{x_1}}} + \left( {21 - 1} \right)d\]
Now substituting the given values in the above equation we get
\[\dfrac{1}{{20}} = \dfrac{1}{4} + \left( {21 - 1} \right)d\]
$ \Rightarrow $\[\dfrac{1}{{20}} = \dfrac{1}{4} + 20 \times d\]
$ \Rightarrow $\[20 \times d = \dfrac{1}{{20}} - \dfrac{1}{4}\]
$ \Rightarrow $\[20 \times d = \dfrac{{1 - 5}}{{20}}\]
$ \Rightarrow $\[20 \times d = - \dfrac{1}{5}\]
$ \Rightarrow $\[d = - \dfrac{1}{{20 \times 5}}\]
$ \Rightarrow $\[d = - \dfrac{1}{{100}}\]
Using the formula for nth term i.e. \[{x_n} = {x_1} + \left( {n - 1} \right)d\]
For nth term in the given series
\[\dfrac{1}{{{x_n}}} = \dfrac{1}{{{x_1}}} + \left( {n - 1} \right)d\]
Simplifying the above equation we get
\[\dfrac{1}{{{x_n}}} = \dfrac{{1 + \left( {n - 1} \right) \times d \times {x_1}}}{{{x_1}}}\]
$ \Rightarrow $\[{x_n} = \dfrac{{{x_1}}}{{1 + \left( {n - 1} \right) \times d \times {x_1}}}\]
Since we know that ${x_n}$ > 50
Therefore \[\dfrac{{{x_1}}}{{1 + \left( {n - 1} \right) \times d \times {x_1}}} > 50\]
$ \Rightarrow $\[\dfrac{{{x_1}}}{{1 + \left( {n - 1} \right) \times d \times {x_1}}} > 50\]
Substituting the given values in the above equation we get
\[\dfrac{4}{{1 + \left( {n - 1} \right) \times \left( { - \dfrac{1}{{100}}} \right) \times 4}} > 50\]
$ \Rightarrow $\[\dfrac{4}{{50}} > 1 + \left( {n - 1} \right) \times \left( { - \dfrac{1}{{100}}} \right) \times 4\]
$ \Rightarrow $\[\dfrac{4}{{50}} - 1 > \left( {n - 1} \right) \times \left( { - \dfrac{1}{{100}}} \right) \times 4\]
$ \Rightarrow $\[\dfrac{{ - 46}}{{50}} > \left( {n - 1} \right) \times \left( { - \dfrac{1}{{100}}} \right) \times 4\]
$ \Rightarrow $\[\dfrac{{ - 23}}{{100}} > \left( {n - 1} \right) \times \left( { - \dfrac{1}{{100}}} \right)\]
$ \Rightarrow$ $- 23 > - (n – 1)$
$ \Rightarrow $ $24 < n $
Now we know that n should be greater than 24 therefore
$n = 25$
We have to find the value of $\sum\limits_{i = 1}^n {\left( {\dfrac{1}{{{x_i}}}} \right)} $ which is calculated by the formula $\sum\limits_{i = 1}^n {{x_i}} = \dfrac{n}{2}\left[ {2 \times {x_1} + \left( {n - 1} \right)d} \right]$
Substituting the values in the above formula we get
$\sum\limits_{i = 1}^{25} {\left( {\dfrac{1}{{{x_i}}}} \right)} = \dfrac{{25}}{2}\left[ {2 \times \dfrac{1}{4} + \left( {25 - 1} \right)\left( {\dfrac{{ - 1}}{{100}}} \right)} \right]$
$ \Rightarrow $$\sum\limits_{i = 1}^{25} {\left( {\dfrac{1}{{{x_i}}}} \right)} = \dfrac{{25}}{2}\left[ {\dfrac{1}{2} + \left( {24 \times \dfrac{{ - 1}}{{100}}} \right)} \right]$
$ \Rightarrow $$\sum\limits_{i = 1}^{25} {\left( {\dfrac{1}{{{x_i}}}} \right)} = \dfrac{{25}}{2} \times \dfrac{{26}}{{100}}$
$ \Rightarrow $$\sum\limits_{i = 1}^{25} {\left( {\dfrac{1}{{{x_i}}}} \right)} = \dfrac{{13}}{4}$
So the value of $\sum\limits_{i = 1}^n {\left( {\dfrac{1}{{{x_i}}}} \right)} $ is equal to $\dfrac{{13}}{4}$
Hence option C is the correct option.
Note: In the above question we used the concepts of arithmetic progression which can be explained as a sequence of numbers having a constant difference between the 2 consecutive numbers let’s take a help of an example to understand the concept of arithmetic progression suppose that you a sequence of numbers belong to whole numbers (0, 1, 2, 3,…… n) if you find the difference between the any 2 successive numbers like 3 and 2 is 1 same as for 2 and 1 the difference is 1 thus we can say that the sequence have same difference such sequences are called arithmetic progression.
Complete step-by-step solution:
According to the given information we have a A.P series i.e. \[\dfrac{1}{{{x_n}}},i = 1,2,3,...,n\] here ${x_1}$ = 4 and ${x_{21}}$ = 20
Now we have to find the common difference between the consecutive terms of this given A.P series
Using the formula of \[{x_n} = {x_1} + \left( {n - 1} \right)d\] to find the 21th term
\[\dfrac{1}{{{x_{21}}}} = \dfrac{1}{{{x_1}}} + \left( {21 - 1} \right)d\]
Now substituting the given values in the above equation we get
\[\dfrac{1}{{20}} = \dfrac{1}{4} + \left( {21 - 1} \right)d\]
$ \Rightarrow $\[\dfrac{1}{{20}} = \dfrac{1}{4} + 20 \times d\]
$ \Rightarrow $\[20 \times d = \dfrac{1}{{20}} - \dfrac{1}{4}\]
$ \Rightarrow $\[20 \times d = \dfrac{{1 - 5}}{{20}}\]
$ \Rightarrow $\[20 \times d = - \dfrac{1}{5}\]
$ \Rightarrow $\[d = - \dfrac{1}{{20 \times 5}}\]
$ \Rightarrow $\[d = - \dfrac{1}{{100}}\]
Using the formula for nth term i.e. \[{x_n} = {x_1} + \left( {n - 1} \right)d\]
For nth term in the given series
\[\dfrac{1}{{{x_n}}} = \dfrac{1}{{{x_1}}} + \left( {n - 1} \right)d\]
Simplifying the above equation we get
\[\dfrac{1}{{{x_n}}} = \dfrac{{1 + \left( {n - 1} \right) \times d \times {x_1}}}{{{x_1}}}\]
$ \Rightarrow $\[{x_n} = \dfrac{{{x_1}}}{{1 + \left( {n - 1} \right) \times d \times {x_1}}}\]
Since we know that ${x_n}$ > 50
Therefore \[\dfrac{{{x_1}}}{{1 + \left( {n - 1} \right) \times d \times {x_1}}} > 50\]
$ \Rightarrow $\[\dfrac{{{x_1}}}{{1 + \left( {n - 1} \right) \times d \times {x_1}}} > 50\]
Substituting the given values in the above equation we get
\[\dfrac{4}{{1 + \left( {n - 1} \right) \times \left( { - \dfrac{1}{{100}}} \right) \times 4}} > 50\]
$ \Rightarrow $\[\dfrac{4}{{50}} > 1 + \left( {n - 1} \right) \times \left( { - \dfrac{1}{{100}}} \right) \times 4\]
$ \Rightarrow $\[\dfrac{4}{{50}} - 1 > \left( {n - 1} \right) \times \left( { - \dfrac{1}{{100}}} \right) \times 4\]
$ \Rightarrow $\[\dfrac{{ - 46}}{{50}} > \left( {n - 1} \right) \times \left( { - \dfrac{1}{{100}}} \right) \times 4\]
$ \Rightarrow $\[\dfrac{{ - 23}}{{100}} > \left( {n - 1} \right) \times \left( { - \dfrac{1}{{100}}} \right)\]
$ \Rightarrow$ $- 23 > - (n – 1)$
$ \Rightarrow $ $24 < n $
Now we know that n should be greater than 24 therefore
$n = 25$
We have to find the value of $\sum\limits_{i = 1}^n {\left( {\dfrac{1}{{{x_i}}}} \right)} $ which is calculated by the formula $\sum\limits_{i = 1}^n {{x_i}} = \dfrac{n}{2}\left[ {2 \times {x_1} + \left( {n - 1} \right)d} \right]$
Substituting the values in the above formula we get
$\sum\limits_{i = 1}^{25} {\left( {\dfrac{1}{{{x_i}}}} \right)} = \dfrac{{25}}{2}\left[ {2 \times \dfrac{1}{4} + \left( {25 - 1} \right)\left( {\dfrac{{ - 1}}{{100}}} \right)} \right]$
$ \Rightarrow $$\sum\limits_{i = 1}^{25} {\left( {\dfrac{1}{{{x_i}}}} \right)} = \dfrac{{25}}{2}\left[ {\dfrac{1}{2} + \left( {24 \times \dfrac{{ - 1}}{{100}}} \right)} \right]$
$ \Rightarrow $$\sum\limits_{i = 1}^{25} {\left( {\dfrac{1}{{{x_i}}}} \right)} = \dfrac{{25}}{2} \times \dfrac{{26}}{{100}}$
$ \Rightarrow $$\sum\limits_{i = 1}^{25} {\left( {\dfrac{1}{{{x_i}}}} \right)} = \dfrac{{13}}{4}$
So the value of $\sum\limits_{i = 1}^n {\left( {\dfrac{1}{{{x_i}}}} \right)} $ is equal to $\dfrac{{13}}{4}$
Hence option C is the correct option.
Note: In the above question we used the concepts of arithmetic progression which can be explained as a sequence of numbers having a constant difference between the 2 consecutive numbers let’s take a help of an example to understand the concept of arithmetic progression suppose that you a sequence of numbers belong to whole numbers (0, 1, 2, 3,…… n) if you find the difference between the any 2 successive numbers like 3 and 2 is 1 same as for 2 and 1 the difference is 1 thus we can say that the sequence have same difference such sequences are called arithmetic progression.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

