
If G is the centroid of a triangle ABC, prove that \[\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\]
Answer
588.6k+ views
Hint: Use the formula that the vector of the centroid ( \[\overrightarrow{G}\] ) is given as \[3\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}\] . Also, apply the concept that \[\overrightarrow{GA}=\overrightarrow{A}-\overrightarrow{G}\] .
Complete step by step solution:
In the question, we have to prove that if G is the centroid of a triangle ABC, then \[\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\]
Now, we know that vector \[\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}\] . Here both \[\overrightarrow{A}\] and \[\overrightarrow{B}\] are the point vectors that represent the vector from the origin. Also, \[\overrightarrow{AB}\] is the line vector that gives the difference of the two vectors \[\overrightarrow{A}\] and \[\overrightarrow{B}\] in that order.
So we will apply this concept and will write all the vectors \[\overrightarrow{GA},\overrightarrow{\,GB},\,\overrightarrow{GC}\] as follows:
\[\overrightarrow{GA}=\overrightarrow{A}-\overrightarrow{G},\,\,\,\,\,\,\,\overrightarrow{GB}=\overrightarrow{B}-\overrightarrow{G},\,\,\,\,\,\,\overrightarrow{GC}=\overrightarrow{C}-\overrightarrow{G}\]
Now, we also know that the If the vertices of the triangle ABD are represented by the vectors \[\overrightarrow{A}\] , \[\overrightarrow{B}\] and \[\overrightarrow{C}\] , then the centroid vector \[\overrightarrow{G}\] is given by the formula \[3\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}\] .
So here we have to apply this concept and we will simplify it as follows:
\[\begin{align}
& \Rightarrow 3\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C} \\
& \Rightarrow \overrightarrow{G}+\overrightarrow{G}+\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C} \\
& \Rightarrow 0=\left( \overrightarrow{A}-\overrightarrow{G} \right)+\left( \overrightarrow{B}-\overrightarrow{G} \right)+\left( \overrightarrow{C}-\overrightarrow{G} \right) \\
& \Rightarrow \left( \overrightarrow{A}-\overrightarrow{G} \right)+\left( \overrightarrow{B}-\overrightarrow{G} \right)+\left( \overrightarrow{C}-\overrightarrow{G} \right)=0 \\
\end{align}\]
Next, we know that \[\overrightarrow{GA}=\overrightarrow{A}-\overrightarrow{G},\,\,\,\,\,\,\,\overrightarrow{GB}=\overrightarrow{B}-\overrightarrow{G},\,\,\,\,\,\,\overrightarrow{GC}=\overrightarrow{C}-\overrightarrow{G}\] , so we get:
\[\begin{align}
& \Rightarrow \left( \overrightarrow{A}-\overrightarrow{G} \right)+\left( \overrightarrow{B}-\overrightarrow{G} \right)+\left( \overrightarrow{C}-\overrightarrow{G} \right)=0 \\
& \Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0 \\
\end{align}\]
Hence we have proven that if G is the centroid of a triangle ABC then \[\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\] .
Note: Here, we have to very careful that \[\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}\] and not \[\overrightarrow{AB}=\overrightarrow{A}-\overrightarrow{B}\] . So this is one of the common mistakes that needs to be avoided while solving the given question.
Complete step by step solution:
In the question, we have to prove that if G is the centroid of a triangle ABC, then \[\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\]
Now, we know that vector \[\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}\] . Here both \[\overrightarrow{A}\] and \[\overrightarrow{B}\] are the point vectors that represent the vector from the origin. Also, \[\overrightarrow{AB}\] is the line vector that gives the difference of the two vectors \[\overrightarrow{A}\] and \[\overrightarrow{B}\] in that order.
So we will apply this concept and will write all the vectors \[\overrightarrow{GA},\overrightarrow{\,GB},\,\overrightarrow{GC}\] as follows:
\[\overrightarrow{GA}=\overrightarrow{A}-\overrightarrow{G},\,\,\,\,\,\,\,\overrightarrow{GB}=\overrightarrow{B}-\overrightarrow{G},\,\,\,\,\,\,\overrightarrow{GC}=\overrightarrow{C}-\overrightarrow{G}\]
Now, we also know that the If the vertices of the triangle ABD are represented by the vectors \[\overrightarrow{A}\] , \[\overrightarrow{B}\] and \[\overrightarrow{C}\] , then the centroid vector \[\overrightarrow{G}\] is given by the formula \[3\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}\] .
So here we have to apply this concept and we will simplify it as follows:
\[\begin{align}
& \Rightarrow 3\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C} \\
& \Rightarrow \overrightarrow{G}+\overrightarrow{G}+\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C} \\
& \Rightarrow 0=\left( \overrightarrow{A}-\overrightarrow{G} \right)+\left( \overrightarrow{B}-\overrightarrow{G} \right)+\left( \overrightarrow{C}-\overrightarrow{G} \right) \\
& \Rightarrow \left( \overrightarrow{A}-\overrightarrow{G} \right)+\left( \overrightarrow{B}-\overrightarrow{G} \right)+\left( \overrightarrow{C}-\overrightarrow{G} \right)=0 \\
\end{align}\]
Next, we know that \[\overrightarrow{GA}=\overrightarrow{A}-\overrightarrow{G},\,\,\,\,\,\,\,\overrightarrow{GB}=\overrightarrow{B}-\overrightarrow{G},\,\,\,\,\,\,\overrightarrow{GC}=\overrightarrow{C}-\overrightarrow{G}\] , so we get:
\[\begin{align}
& \Rightarrow \left( \overrightarrow{A}-\overrightarrow{G} \right)+\left( \overrightarrow{B}-\overrightarrow{G} \right)+\left( \overrightarrow{C}-\overrightarrow{G} \right)=0 \\
& \Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0 \\
\end{align}\]
Hence we have proven that if G is the centroid of a triangle ABC then \[\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\] .
Note: Here, we have to very careful that \[\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}\] and not \[\overrightarrow{AB}=\overrightarrow{A}-\overrightarrow{B}\] . So this is one of the common mistakes that needs to be avoided while solving the given question.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

