
If G is the centroid of a triangle ABC then$\overset{\to }{\mathop{\text{GA}}}\,+\overset{\to }{\mathop{\text{GB}}}\,+\overset{\to }{\mathop{\text{GC}}}\,$ is equal to :
A . $\overset{\to }{\mathop{0}}\,$
B. $3\overset{\to }{\mathop{\text{GA}}}\,$
C. $3\overset{\to }{\mathop{\text{GB}}}\,$
D. $3\overset{\to }{\mathop{\text{GC}}}\,$
Answer
537.6k+ views
Hint: In triangle ABC we can define centroid as $\overrightarrow{G}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3}$ where $\overrightarrow{A},\overrightarrow{B},\overrightarrow{C}$ are sides vector of triangle ABC. If have length of sides of triangle then we can use it as in same form.
Complete step by step solution:
If sides vectors of triangle ABC are $\overrightarrow{A},\overrightarrow{B},\overrightarrow{C}$. Then we can write centroid of triangle as
$\overrightarrow{G}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3}$
We can arrange it as
$3\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}$..................................(i)
We can also write
$\overrightarrow{GA}=\overrightarrow{A}-\overrightarrow{G}$
$\overrightarrow{GB}=\overrightarrow{B}-\overrightarrow{G}$
$\overrightarrow{GC}=\overrightarrow{C}-\overrightarrow{G}$
Hence given expression can be written as
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}-\overrightarrow{G}+\overrightarrow{B}-\overrightarrow{G}+\overrightarrow{C}-\overrightarrow{G}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}-3\overrightarrow{G}\]
From equation (i) we can write value of \[\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=3\overrightarrow{G}-3\overrightarrow{G}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\]
Hence option a is correct.
Note: We can use the same formula of centroid in terms of coordinate as well. Also we can write $\overrightarrow{AB}$ as difference of individual vector A and vector B as below:
$\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$
But we always write vector B first and then vector A. We need to remember this point.
Complete step by step solution:
If sides vectors of triangle ABC are $\overrightarrow{A},\overrightarrow{B},\overrightarrow{C}$. Then we can write centroid of triangle as
$\overrightarrow{G}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3}$
We can arrange it as
$3\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}$..................................(i)
We can also write
$\overrightarrow{GA}=\overrightarrow{A}-\overrightarrow{G}$
$\overrightarrow{GB}=\overrightarrow{B}-\overrightarrow{G}$
$\overrightarrow{GC}=\overrightarrow{C}-\overrightarrow{G}$
Hence given expression can be written as
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}-\overrightarrow{G}+\overrightarrow{B}-\overrightarrow{G}+\overrightarrow{C}-\overrightarrow{G}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}-3\overrightarrow{G}\]
From equation (i) we can write value of \[\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=3\overrightarrow{G}-3\overrightarrow{G}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\]
Hence option a is correct.
Note: We can use the same formula of centroid in terms of coordinate as well. Also we can write $\overrightarrow{AB}$ as difference of individual vector A and vector B as below:
$\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$
But we always write vector B first and then vector A. We need to remember this point.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Whales are warmblooded animals which live in cold seas class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Compare the Mendeleev and Modern Periodic Tables on class 11 chemistry CBSE

How does Amoeba obtain its food a Endocytosis b Exocytosis class 11 biology ICSE
