
If G is the centroid of a triangle ABC then$\overset{\to }{\mathop{\text{GA}}}\,+\overset{\to }{\mathop{\text{GB}}}\,+\overset{\to }{\mathop{\text{GC}}}\,$ is equal to :
A . $\overset{\to }{\mathop{0}}\,$
B. $3\overset{\to }{\mathop{\text{GA}}}\,$
C. $3\overset{\to }{\mathop{\text{GB}}}\,$
D. $3\overset{\to }{\mathop{\text{GC}}}\,$
Answer
586.8k+ views
Hint: In triangle ABC we can define centroid as $\overrightarrow{G}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3}$ where $\overrightarrow{A},\overrightarrow{B},\overrightarrow{C}$ are sides vector of triangle ABC. If have length of sides of triangle then we can use it as in same form.
Complete step by step solution:
If sides vectors of triangle ABC are $\overrightarrow{A},\overrightarrow{B},\overrightarrow{C}$. Then we can write centroid of triangle as
$\overrightarrow{G}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3}$
We can arrange it as
$3\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}$..................................(i)
We can also write
$\overrightarrow{GA}=\overrightarrow{A}-\overrightarrow{G}$
$\overrightarrow{GB}=\overrightarrow{B}-\overrightarrow{G}$
$\overrightarrow{GC}=\overrightarrow{C}-\overrightarrow{G}$
Hence given expression can be written as
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}-\overrightarrow{G}+\overrightarrow{B}-\overrightarrow{G}+\overrightarrow{C}-\overrightarrow{G}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}-3\overrightarrow{G}\]
From equation (i) we can write value of \[\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=3\overrightarrow{G}-3\overrightarrow{G}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\]
Hence option a is correct.
Note: We can use the same formula of centroid in terms of coordinate as well. Also we can write $\overrightarrow{AB}$ as difference of individual vector A and vector B as below:
$\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$
But we always write vector B first and then vector A. We need to remember this point.
Complete step by step solution:
If sides vectors of triangle ABC are $\overrightarrow{A},\overrightarrow{B},\overrightarrow{C}$. Then we can write centroid of triangle as
$\overrightarrow{G}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3}$
We can arrange it as
$3\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}$..................................(i)
We can also write
$\overrightarrow{GA}=\overrightarrow{A}-\overrightarrow{G}$
$\overrightarrow{GB}=\overrightarrow{B}-\overrightarrow{G}$
$\overrightarrow{GC}=\overrightarrow{C}-\overrightarrow{G}$
Hence given expression can be written as
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}-\overrightarrow{G}+\overrightarrow{B}-\overrightarrow{G}+\overrightarrow{C}-\overrightarrow{G}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}-3\overrightarrow{G}\]
From equation (i) we can write value of \[\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=3\overrightarrow{G}-3\overrightarrow{G}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\]
Hence option a is correct.
Note: We can use the same formula of centroid in terms of coordinate as well. Also we can write $\overrightarrow{AB}$ as difference of individual vector A and vector B as below:
$\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$
But we always write vector B first and then vector A. We need to remember this point.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

