
If G is the centroid of a triangle ABC then$\overset{\to }{\mathop{\text{GA}}}\,+\overset{\to }{\mathop{\text{GB}}}\,+\overset{\to }{\mathop{\text{GC}}}\,$ is equal to :
A . $\overset{\to }{\mathop{0}}\,$
B. $3\overset{\to }{\mathop{\text{GA}}}\,$
C. $3\overset{\to }{\mathop{\text{GB}}}\,$
D. $3\overset{\to }{\mathop{\text{GC}}}\,$
Answer
586.8k+ views
Hint: In triangle ABC we can define centroid as $\overrightarrow{G}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3}$ where $\overrightarrow{A},\overrightarrow{B},\overrightarrow{C}$ are sides vector of triangle ABC. If have length of sides of triangle then we can use it as in same form.
Complete step by step solution:
If sides vectors of triangle ABC are $\overrightarrow{A},\overrightarrow{B},\overrightarrow{C}$. Then we can write centroid of triangle as
$\overrightarrow{G}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3}$
We can arrange it as
$3\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}$..................................(i)
We can also write
$\overrightarrow{GA}=\overrightarrow{A}-\overrightarrow{G}$
$\overrightarrow{GB}=\overrightarrow{B}-\overrightarrow{G}$
$\overrightarrow{GC}=\overrightarrow{C}-\overrightarrow{G}$
Hence given expression can be written as
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}-\overrightarrow{G}+\overrightarrow{B}-\overrightarrow{G}+\overrightarrow{C}-\overrightarrow{G}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}-3\overrightarrow{G}\]
From equation (i) we can write value of \[\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=3\overrightarrow{G}-3\overrightarrow{G}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\]
Hence option a is correct.
Note: We can use the same formula of centroid in terms of coordinate as well. Also we can write $\overrightarrow{AB}$ as difference of individual vector A and vector B as below:
$\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$
But we always write vector B first and then vector A. We need to remember this point.
Complete step by step solution:
If sides vectors of triangle ABC are $\overrightarrow{A},\overrightarrow{B},\overrightarrow{C}$. Then we can write centroid of triangle as
$\overrightarrow{G}=\dfrac{\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}}{3}$
We can arrange it as
$3\overrightarrow{G}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}$..................................(i)
We can also write
$\overrightarrow{GA}=\overrightarrow{A}-\overrightarrow{G}$
$\overrightarrow{GB}=\overrightarrow{B}-\overrightarrow{G}$
$\overrightarrow{GC}=\overrightarrow{C}-\overrightarrow{G}$
Hence given expression can be written as
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}-\overrightarrow{G}+\overrightarrow{B}-\overrightarrow{G}+\overrightarrow{C}-\overrightarrow{G}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}-3\overrightarrow{G}\]
From equation (i) we can write value of \[\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=3\overrightarrow{G}-3\overrightarrow{G}\]
\[\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\]
Hence option a is correct.
Note: We can use the same formula of centroid in terms of coordinate as well. Also we can write $\overrightarrow{AB}$ as difference of individual vector A and vector B as below:
$\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$
But we always write vector B first and then vector A. We need to remember this point.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

