
If $\text{f(x)}\,\text{=}\,{{\text{x}}^{3/2}}\,(3\text{x}-10),\,\text{x}\,\ge \,0$ then in which of the following intervals f(x) is decreasing?
A(−∞, 0) ∪ (0, ∞)
B(2, ∞)
C(−∞, −1) ∪ [1, ∞)
D(−∞, 0) ∪ [2, ∞)
Answer
556.8k+ views
Hint: Since, $\text{f(x)}\,\text{=}\,{{\text{x}}^{3/2}}\,(3\text{x}-10),\,\text{x}\,\ge \,0$ we will find f1(x). We will equate f1(x) = 0 to find points where f(x) changes sign. Then, draw a wavy graph to see where the function is decreasing.
Complete step-by-step answer:
We will first try to understand the concept of decreasing function.
So, a function is decreasing on an interval if $\text{f(}{{\text{x}}_{1}}\text{)}\,\ge \,\text{f(}{{\text{x}}_{2}})$. Thus, a decreasing interval may also contain points where the function has a constant value.
Now, we have
$\text{f(x)}\,\text{=}\,{{\text{x}}^{3/2}}\,(3\text{x}-10),\,\text{x}\,\ge \,0$
Now, we will find the value of ${{\text{f}}^{\text{1}}}\text{(x)}$
$\begin{align}
& {{\text{f}}^{1}}(\text{x})=\dfrac{\text{d}}{\text{dx}}\left( \text{f}(\text{x}) \right)=\dfrac{\text{d}}{\text{dx}}\left( {{\text{x}}^{3/2}}(3\text{x}-10) \right) \\
& =\dfrac{\text{d}}{\text{dx}}\left( \text{3}{{\text{x}}^{{5}/{2}\;}}-\text{10}{{\text{x}}^{{3}/{2}\;}} \right) \\
& =\dfrac{15}{2}{{\text{x}}^{{3}/{2}\;}}-15{{\text{x}}^{\dfrac{1}{2}}} \\
& =\dfrac{15}{2}\sqrt{\text{x}}\,(\text{x}-2)
\end{align}$
For a f(n) to be decreasing:-
${{\text{f}}^{1}}\text{(x)}\,\le \,0$
⇒ $\dfrac{15}{2}\sqrt{\text{x}}(\text{x}-2)\le 0$
⇒ $\sqrt{\text{x}}(\text{x}-2)\le 0$
But $\sqrt{\text{x}}\ge 0$ always
$\begin{align}
& \Rightarrow \text{x}-2\le 0 \\
& \Rightarrow \,\text{x}\le 2\,\text{but}\,\text{x}\,\ge \,0 \\
\end{align}$
None of the options matches with the soln.
Note: We have used the formula.
$\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{a}}{{\text{x}}^{\text{n}}}) = {\text{an}}{{\text{x}}^{{\text{n}} - 1}}$ to calculate $f^1(x)$.
Also, if a function f(x) is increasing, we must have $f^1(x)$ ≥ 0 & if a function is decreasing, we must have f1(x) ≤ 0.
Complete step-by-step answer:
We will first try to understand the concept of decreasing function.
So, a function is decreasing on an interval if $\text{f(}{{\text{x}}_{1}}\text{)}\,\ge \,\text{f(}{{\text{x}}_{2}})$. Thus, a decreasing interval may also contain points where the function has a constant value.
Now, we have
$\text{f(x)}\,\text{=}\,{{\text{x}}^{3/2}}\,(3\text{x}-10),\,\text{x}\,\ge \,0$
Now, we will find the value of ${{\text{f}}^{\text{1}}}\text{(x)}$
$\begin{align}
& {{\text{f}}^{1}}(\text{x})=\dfrac{\text{d}}{\text{dx}}\left( \text{f}(\text{x}) \right)=\dfrac{\text{d}}{\text{dx}}\left( {{\text{x}}^{3/2}}(3\text{x}-10) \right) \\
& =\dfrac{\text{d}}{\text{dx}}\left( \text{3}{{\text{x}}^{{5}/{2}\;}}-\text{10}{{\text{x}}^{{3}/{2}\;}} \right) \\
& =\dfrac{15}{2}{{\text{x}}^{{3}/{2}\;}}-15{{\text{x}}^{\dfrac{1}{2}}} \\
& =\dfrac{15}{2}\sqrt{\text{x}}\,(\text{x}-2)
\end{align}$
For a f(n) to be decreasing:-
${{\text{f}}^{1}}\text{(x)}\,\le \,0$
⇒ $\dfrac{15}{2}\sqrt{\text{x}}(\text{x}-2)\le 0$
⇒ $\sqrt{\text{x}}(\text{x}-2)\le 0$
But $\sqrt{\text{x}}\ge 0$ always
$\begin{align}
& \Rightarrow \text{x}-2\le 0 \\
& \Rightarrow \,\text{x}\le 2\,\text{but}\,\text{x}\,\ge \,0 \\
\end{align}$
None of the options matches with the soln.
Note: We have used the formula.
$\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{a}}{{\text{x}}^{\text{n}}}) = {\text{an}}{{\text{x}}^{{\text{n}} - 1}}$ to calculate $f^1(x)$.
Also, if a function f(x) is increasing, we must have $f^1(x)$ ≥ 0 & if a function is decreasing, we must have f1(x) ≤ 0.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

