
If $f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$ then the range of f(x) is:
a)$\left[ \dfrac{1}{4},1 \right]$
b)$\left[ \dfrac{1}{4},\dfrac{3}{4} \right]$
c)$\left[ \dfrac{3}{4},1 \right]$
d)None of these
Answer
609.3k+ views
Hint: Here, first rewrite f(x) as $f(x)={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}$. Then, we have to apply the formula, ${{(a+b)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$. Then do the simplification and obtain the function in terms of ${{\sin }^{2}}2x$. Now, with the help of this find the range of the function.
Complete step-by-step answer:
Here, we are given that $f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$.
Now, we have to find the range of f(x).
First, consider the function:
$f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$
Now, we can rewrite the above function as:
$f(x)={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}$
We know the expansion of ${{(a+b)}^{3}}$, which is :
$\begin{align}
& {{(a+b)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
& \Rightarrow {{(a+b)}^{3}}={{a}^{3}}+3ab(a+b)+{{b}^{3}} \\
\end{align}$
Now, from the above equation we can find ${{a}^{3}}+{{b}^{3}}$ by taking 3ab (a + b) to the left side,
$\Rightarrow {{(a+b)}^{3}}-3ab(a+b)={{a}^{3}}+{{b}^{3}}$
Next, by applying this expansion we can write:
$\begin{align}
& {{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x \right)}^{3}}+3{{\sin }^{2}}x{{\cos }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x)+{{\left( {{\cos }^{2}}x \right)}^{3}} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x) \\
\end{align}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Hence our above equation becomes:
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{1}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x\times 1 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-3{{\sin }^{2}}x{{\cos }^{2}}x \\
\end{align}$
Now, by multiplying and dividing 4 in $3{{\sin }^{2}}x{{\cos }^{2}}x$ we get:
${{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 4{{\sin }^{2}}x{{\cos }^{2}}x$
We know that:
$4{{\sin }^{2}}x{{\cos }^{2}}x={{(2\sin x\cos x)}^{2}}$
Hence, our equation becomes:
${{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{(2\sin x\cos x)}^{2}}$
We also have an identity that:
$2\sin x\cos x=\sin 2x$
Thus, we obtain:
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{(\sin 2x)}^{2}} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{\sin }^{2}}2x \\
\end{align}$
We have that the range of $\sin x\in [-1,1]$
Then the range of ${{\sin }^{2}}2x\in [0,1]$
Now, when ${{\sin }^{2}}2x=0$ we have,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 0 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-0 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1 \\
& \Rightarrow f(x)=1 \\
\end{align}$
Next, when ${{\sin }^{2}}2x=1$ we have,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 1 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4} \\
\end{align}$
Next, by taking LCM,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=\dfrac{4-3}{4} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=\dfrac{1}{4} \\
& \Rightarrow f(x)=\dfrac{1}{4} \\
\end{align}$
Therefore, we can say that the range of f(x) will be $\left[ \dfrac{1}{4},1 \right]$.
Hence, the correct answer for this question is option (a).
Note: We have the range of $\sin x\in [-1,1]$. Then the range of ${{\sin }^{2}}x\in [0,1]$. Similarly, we can say that the range of ${{\sin }^{2}}2x\in [0,1]$ as it is a square function the range can never be negative. With the help of the range of ${{\sin }^{2}}2x$, we can determine the range of the function f(x).
Complete step-by-step answer:
Here, we are given that $f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$.
Now, we have to find the range of f(x).
First, consider the function:
$f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$
Now, we can rewrite the above function as:
$f(x)={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}$
We know the expansion of ${{(a+b)}^{3}}$, which is :
$\begin{align}
& {{(a+b)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
& \Rightarrow {{(a+b)}^{3}}={{a}^{3}}+3ab(a+b)+{{b}^{3}} \\
\end{align}$
Now, from the above equation we can find ${{a}^{3}}+{{b}^{3}}$ by taking 3ab (a + b) to the left side,
$\Rightarrow {{(a+b)}^{3}}-3ab(a+b)={{a}^{3}}+{{b}^{3}}$
Next, by applying this expansion we can write:
$\begin{align}
& {{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x \right)}^{3}}+3{{\sin }^{2}}x{{\cos }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x)+{{\left( {{\cos }^{2}}x \right)}^{3}} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x) \\
\end{align}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Hence our above equation becomes:
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{1}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x\times 1 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-3{{\sin }^{2}}x{{\cos }^{2}}x \\
\end{align}$
Now, by multiplying and dividing 4 in $3{{\sin }^{2}}x{{\cos }^{2}}x$ we get:
${{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 4{{\sin }^{2}}x{{\cos }^{2}}x$
We know that:
$4{{\sin }^{2}}x{{\cos }^{2}}x={{(2\sin x\cos x)}^{2}}$
Hence, our equation becomes:
${{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{(2\sin x\cos x)}^{2}}$
We also have an identity that:
$2\sin x\cos x=\sin 2x$
Thus, we obtain:
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{(\sin 2x)}^{2}} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{\sin }^{2}}2x \\
\end{align}$
We have that the range of $\sin x\in [-1,1]$
Then the range of ${{\sin }^{2}}2x\in [0,1]$
Now, when ${{\sin }^{2}}2x=0$ we have,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 0 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-0 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1 \\
& \Rightarrow f(x)=1 \\
\end{align}$
Next, when ${{\sin }^{2}}2x=1$ we have,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 1 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4} \\
\end{align}$
Next, by taking LCM,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=\dfrac{4-3}{4} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=\dfrac{1}{4} \\
& \Rightarrow f(x)=\dfrac{1}{4} \\
\end{align}$
Therefore, we can say that the range of f(x) will be $\left[ \dfrac{1}{4},1 \right]$.
Hence, the correct answer for this question is option (a).
Note: We have the range of $\sin x\in [-1,1]$. Then the range of ${{\sin }^{2}}x\in [0,1]$. Similarly, we can say that the range of ${{\sin }^{2}}2x\in [0,1]$ as it is a square function the range can never be negative. With the help of the range of ${{\sin }^{2}}2x$, we can determine the range of the function f(x).
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

