
If $f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$ then the range of f(x) is:
a)$\left[ \dfrac{1}{4},1 \right]$
b)$\left[ \dfrac{1}{4},\dfrac{3}{4} \right]$
c)$\left[ \dfrac{3}{4},1 \right]$
d)None of these
Answer
595.2k+ views
Hint: Here, first rewrite f(x) as $f(x)={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}$. Then, we have to apply the formula, ${{(a+b)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$. Then do the simplification and obtain the function in terms of ${{\sin }^{2}}2x$. Now, with the help of this find the range of the function.
Complete step-by-step answer:
Here, we are given that $f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$.
Now, we have to find the range of f(x).
First, consider the function:
$f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$
Now, we can rewrite the above function as:
$f(x)={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}$
We know the expansion of ${{(a+b)}^{3}}$, which is :
$\begin{align}
& {{(a+b)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
& \Rightarrow {{(a+b)}^{3}}={{a}^{3}}+3ab(a+b)+{{b}^{3}} \\
\end{align}$
Now, from the above equation we can find ${{a}^{3}}+{{b}^{3}}$ by taking 3ab (a + b) to the left side,
$\Rightarrow {{(a+b)}^{3}}-3ab(a+b)={{a}^{3}}+{{b}^{3}}$
Next, by applying this expansion we can write:
$\begin{align}
& {{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x \right)}^{3}}+3{{\sin }^{2}}x{{\cos }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x)+{{\left( {{\cos }^{2}}x \right)}^{3}} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x) \\
\end{align}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Hence our above equation becomes:
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{1}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x\times 1 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-3{{\sin }^{2}}x{{\cos }^{2}}x \\
\end{align}$
Now, by multiplying and dividing 4 in $3{{\sin }^{2}}x{{\cos }^{2}}x$ we get:
${{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 4{{\sin }^{2}}x{{\cos }^{2}}x$
We know that:
$4{{\sin }^{2}}x{{\cos }^{2}}x={{(2\sin x\cos x)}^{2}}$
Hence, our equation becomes:
${{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{(2\sin x\cos x)}^{2}}$
We also have an identity that:
$2\sin x\cos x=\sin 2x$
Thus, we obtain:
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{(\sin 2x)}^{2}} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{\sin }^{2}}2x \\
\end{align}$
We have that the range of $\sin x\in [-1,1]$
Then the range of ${{\sin }^{2}}2x\in [0,1]$
Now, when ${{\sin }^{2}}2x=0$ we have,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 0 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-0 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1 \\
& \Rightarrow f(x)=1 \\
\end{align}$
Next, when ${{\sin }^{2}}2x=1$ we have,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 1 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4} \\
\end{align}$
Next, by taking LCM,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=\dfrac{4-3}{4} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=\dfrac{1}{4} \\
& \Rightarrow f(x)=\dfrac{1}{4} \\
\end{align}$
Therefore, we can say that the range of f(x) will be $\left[ \dfrac{1}{4},1 \right]$.
Hence, the correct answer for this question is option (a).
Note: We have the range of $\sin x\in [-1,1]$. Then the range of ${{\sin }^{2}}x\in [0,1]$. Similarly, we can say that the range of ${{\sin }^{2}}2x\in [0,1]$ as it is a square function the range can never be negative. With the help of the range of ${{\sin }^{2}}2x$, we can determine the range of the function f(x).
Complete step-by-step answer:
Here, we are given that $f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$.
Now, we have to find the range of f(x).
First, consider the function:
$f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$
Now, we can rewrite the above function as:
$f(x)={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}$
We know the expansion of ${{(a+b)}^{3}}$, which is :
$\begin{align}
& {{(a+b)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
& \Rightarrow {{(a+b)}^{3}}={{a}^{3}}+3ab(a+b)+{{b}^{3}} \\
\end{align}$
Now, from the above equation we can find ${{a}^{3}}+{{b}^{3}}$ by taking 3ab (a + b) to the left side,
$\Rightarrow {{(a+b)}^{3}}-3ab(a+b)={{a}^{3}}+{{b}^{3}}$
Next, by applying this expansion we can write:
$\begin{align}
& {{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x \right)}^{3}}+3{{\sin }^{2}}x{{\cos }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x)+{{\left( {{\cos }^{2}}x \right)}^{3}} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x) \\
\end{align}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Hence our above equation becomes:
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{1}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x\times 1 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-3{{\sin }^{2}}x{{\cos }^{2}}x \\
\end{align}$
Now, by multiplying and dividing 4 in $3{{\sin }^{2}}x{{\cos }^{2}}x$ we get:
${{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 4{{\sin }^{2}}x{{\cos }^{2}}x$
We know that:
$4{{\sin }^{2}}x{{\cos }^{2}}x={{(2\sin x\cos x)}^{2}}$
Hence, our equation becomes:
${{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{(2\sin x\cos x)}^{2}}$
We also have an identity that:
$2\sin x\cos x=\sin 2x$
Thus, we obtain:
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{(\sin 2x)}^{2}} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{\sin }^{2}}2x \\
\end{align}$
We have that the range of $\sin x\in [-1,1]$
Then the range of ${{\sin }^{2}}2x\in [0,1]$
Now, when ${{\sin }^{2}}2x=0$ we have,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 0 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-0 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1 \\
& \Rightarrow f(x)=1 \\
\end{align}$
Next, when ${{\sin }^{2}}2x=1$ we have,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 1 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4} \\
\end{align}$
Next, by taking LCM,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=\dfrac{4-3}{4} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=\dfrac{1}{4} \\
& \Rightarrow f(x)=\dfrac{1}{4} \\
\end{align}$
Therefore, we can say that the range of f(x) will be $\left[ \dfrac{1}{4},1 \right]$.
Hence, the correct answer for this question is option (a).
Note: We have the range of $\sin x\in [-1,1]$. Then the range of ${{\sin }^{2}}x\in [0,1]$. Similarly, we can say that the range of ${{\sin }^{2}}2x\in [0,1]$ as it is a square function the range can never be negative. With the help of the range of ${{\sin }^{2}}2x$, we can determine the range of the function f(x).
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

