
If $f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$ then the range of f(x) is:
a)$\left[ \dfrac{1}{4},1 \right]$
b)$\left[ \dfrac{1}{4},\dfrac{3}{4} \right]$
c)$\left[ \dfrac{3}{4},1 \right]$
d)None of these
Answer
596.1k+ views
Hint: Here, first rewrite f(x) as $f(x)={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}$. Then, we have to apply the formula, ${{(a+b)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$. Then do the simplification and obtain the function in terms of ${{\sin }^{2}}2x$. Now, with the help of this find the range of the function.
Complete step-by-step answer:
Here, we are given that $f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$.
Now, we have to find the range of f(x).
First, consider the function:
$f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$
Now, we can rewrite the above function as:
$f(x)={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}$
We know the expansion of ${{(a+b)}^{3}}$, which is :
$\begin{align}
& {{(a+b)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
& \Rightarrow {{(a+b)}^{3}}={{a}^{3}}+3ab(a+b)+{{b}^{3}} \\
\end{align}$
Now, from the above equation we can find ${{a}^{3}}+{{b}^{3}}$ by taking 3ab (a + b) to the left side,
$\Rightarrow {{(a+b)}^{3}}-3ab(a+b)={{a}^{3}}+{{b}^{3}}$
Next, by applying this expansion we can write:
$\begin{align}
& {{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x \right)}^{3}}+3{{\sin }^{2}}x{{\cos }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x)+{{\left( {{\cos }^{2}}x \right)}^{3}} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x) \\
\end{align}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Hence our above equation becomes:
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{1}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x\times 1 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-3{{\sin }^{2}}x{{\cos }^{2}}x \\
\end{align}$
Now, by multiplying and dividing 4 in $3{{\sin }^{2}}x{{\cos }^{2}}x$ we get:
${{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 4{{\sin }^{2}}x{{\cos }^{2}}x$
We know that:
$4{{\sin }^{2}}x{{\cos }^{2}}x={{(2\sin x\cos x)}^{2}}$
Hence, our equation becomes:
${{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{(2\sin x\cos x)}^{2}}$
We also have an identity that:
$2\sin x\cos x=\sin 2x$
Thus, we obtain:
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{(\sin 2x)}^{2}} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{\sin }^{2}}2x \\
\end{align}$
We have that the range of $\sin x\in [-1,1]$
Then the range of ${{\sin }^{2}}2x\in [0,1]$
Now, when ${{\sin }^{2}}2x=0$ we have,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 0 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-0 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1 \\
& \Rightarrow f(x)=1 \\
\end{align}$
Next, when ${{\sin }^{2}}2x=1$ we have,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 1 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4} \\
\end{align}$
Next, by taking LCM,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=\dfrac{4-3}{4} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=\dfrac{1}{4} \\
& \Rightarrow f(x)=\dfrac{1}{4} \\
\end{align}$
Therefore, we can say that the range of f(x) will be $\left[ \dfrac{1}{4},1 \right]$.
Hence, the correct answer for this question is option (a).
Note: We have the range of $\sin x\in [-1,1]$. Then the range of ${{\sin }^{2}}x\in [0,1]$. Similarly, we can say that the range of ${{\sin }^{2}}2x\in [0,1]$ as it is a square function the range can never be negative. With the help of the range of ${{\sin }^{2}}2x$, we can determine the range of the function f(x).
Complete step-by-step answer:
Here, we are given that $f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$.
Now, we have to find the range of f(x).
First, consider the function:
$f(x)={{\sin }^{6}}x+{{\cos }^{6}}x$
Now, we can rewrite the above function as:
$f(x)={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}$
We know the expansion of ${{(a+b)}^{3}}$, which is :
$\begin{align}
& {{(a+b)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
& \Rightarrow {{(a+b)}^{3}}={{a}^{3}}+3ab(a+b)+{{b}^{3}} \\
\end{align}$
Now, from the above equation we can find ${{a}^{3}}+{{b}^{3}}$ by taking 3ab (a + b) to the left side,
$\Rightarrow {{(a+b)}^{3}}-3ab(a+b)={{a}^{3}}+{{b}^{3}}$
Next, by applying this expansion we can write:
$\begin{align}
& {{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x \right)}^{3}}+3{{\sin }^{2}}x{{\cos }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x)+{{\left( {{\cos }^{2}}x \right)}^{3}} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x) \\
\end{align}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Hence our above equation becomes:
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}={{1}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x\times 1 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-3{{\sin }^{2}}x{{\cos }^{2}}x \\
\end{align}$
Now, by multiplying and dividing 4 in $3{{\sin }^{2}}x{{\cos }^{2}}x$ we get:
${{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 4{{\sin }^{2}}x{{\cos }^{2}}x$
We know that:
$4{{\sin }^{2}}x{{\cos }^{2}}x={{(2\sin x\cos x)}^{2}}$
Hence, our equation becomes:
${{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{(2\sin x\cos x)}^{2}}$
We also have an identity that:
$2\sin x\cos x=\sin 2x$
Thus, we obtain:
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{(\sin 2x)}^{2}} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}{{\sin }^{2}}2x \\
\end{align}$
We have that the range of $\sin x\in [-1,1]$
Then the range of ${{\sin }^{2}}2x\in [0,1]$
Now, when ${{\sin }^{2}}2x=0$ we have,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 0 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-0 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1 \\
& \Rightarrow f(x)=1 \\
\end{align}$
Next, when ${{\sin }^{2}}2x=1$ we have,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4}\times 1 \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=1-\dfrac{3}{4} \\
\end{align}$
Next, by taking LCM,
$\begin{align}
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=\dfrac{4-3}{4} \\
& \Rightarrow {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}=\dfrac{1}{4} \\
& \Rightarrow f(x)=\dfrac{1}{4} \\
\end{align}$
Therefore, we can say that the range of f(x) will be $\left[ \dfrac{1}{4},1 \right]$.
Hence, the correct answer for this question is option (a).
Note: We have the range of $\sin x\in [-1,1]$. Then the range of ${{\sin }^{2}}x\in [0,1]$. Similarly, we can say that the range of ${{\sin }^{2}}2x\in [0,1]$ as it is a square function the range can never be negative. With the help of the range of ${{\sin }^{2}}2x$, we can determine the range of the function f(x).
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

