
If \[f(x)=\left| \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \right|\], then \[f'(x)=\lambda \left| \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \right|\]. Find the value of \[\lambda .\]
Answer
584.4k+ views
Hint: Take the matrix f(x) and find its determinant f’(x), i.e. differentiate \[{{C}_{1}}\] while \[{{C}_{2}}\] and \[{{C}_{3}}\] are constant plus differentiate \[{{C}_{2}}\] while \[{{C}_{1}}\] and \[{{C}_{3}}\] are constant. Thus, the columns become some value, apply property of determinants and solve it.
Complete step-by-step answer:
Given to us is that \[f(x)=\left| \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \right|\] and \[f'(x)=\lambda \left| \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \right|........(1)\]
In the matrix of \[f(x)=\left| \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \right|\]
Here, \[{{C}_{1}}\], \[{{C}_{2}}\] and \[{{C}_{3}}\] are the three columns of the \[3\times 3\] matrix.
Now let us differentiate column 1 and keep \[{{C}_{2}}\] and \[{{C}_{3}}\] as they are in the first. Then keep \[{{C}_{1}}\] and \[{{C}_{3}}\] constant and differentiate \[{{C}_{2}}\]. If we differentiate \[{{C}_{3}}\], we will get the column as zero.
\[f'(x)=\left| \begin{matrix}
4{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
4{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
4{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \right|+\left| \begin{matrix}
{{\left( x-a \right)}^{4}} & 3{{\left( x-a \right)}^{2}} & 1 \\
{{\left( x-b \right)}^{4}} & 3{{\left( x-b \right)}^{2}} & 1 \\
{{\left( x-c \right)}^{4}} & 3{{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \right|\]
\[=4\left| \begin{matrix}
{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \right|+3\left| \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \right|\]
\[{{C}_{1}}\] and \[{{C}_{2}}\] in the first determinant is same, so the value becomes zero, i.e. \[{{C}_{1}}={{C}_{2}}=0\].
i.e. the determinant of a matrix with two identical columns is zero.
Thus, \[f'(x)=3\left| \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \right|......(2)\]
Now let us compare equation (1) and (2).
From this, we can say that \[\lambda =3\].
Thus, we got the value of \[\lambda =3\].
Note: It is one of the properties of determinants. If we have a matrix with two identical rows or columns then its determinant is equal to zero. In this question we had two columns same, i.e. \[{{C}_{1}}={{C}_{2}}\]. Thus, finding its determinant comes out, to be zero at the end.
Complete step-by-step answer:
Given to us is that \[f(x)=\left| \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \right|\] and \[f'(x)=\lambda \left| \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \right|........(1)\]
In the matrix of \[f(x)=\left| \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \right|\]
Here, \[{{C}_{1}}\], \[{{C}_{2}}\] and \[{{C}_{3}}\] are the three columns of the \[3\times 3\] matrix.
Now let us differentiate column 1 and keep \[{{C}_{2}}\] and \[{{C}_{3}}\] as they are in the first. Then keep \[{{C}_{1}}\] and \[{{C}_{3}}\] constant and differentiate \[{{C}_{2}}\]. If we differentiate \[{{C}_{3}}\], we will get the column as zero.
\[f'(x)=\left| \begin{matrix}
4{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
4{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
4{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \right|+\left| \begin{matrix}
{{\left( x-a \right)}^{4}} & 3{{\left( x-a \right)}^{2}} & 1 \\
{{\left( x-b \right)}^{4}} & 3{{\left( x-b \right)}^{2}} & 1 \\
{{\left( x-c \right)}^{4}} & 3{{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \right|\]
\[=4\left| \begin{matrix}
{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \right|+3\left| \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \right|\]
\[{{C}_{1}}\] and \[{{C}_{2}}\] in the first determinant is same, so the value becomes zero, i.e. \[{{C}_{1}}={{C}_{2}}=0\].
i.e. the determinant of a matrix with two identical columns is zero.
Thus, \[f'(x)=3\left| \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \right|......(2)\]
Now let us compare equation (1) and (2).
From this, we can say that \[\lambda =3\].
Thus, we got the value of \[\lambda =3\].
Note: It is one of the properties of determinants. If we have a matrix with two identical rows or columns then its determinant is equal to zero. In this question we had two columns same, i.e. \[{{C}_{1}}={{C}_{2}}\]. Thus, finding its determinant comes out, to be zero at the end.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

