
If \[f(x)=\left\{ \begin{align}
& \dfrac{{{\cos }^{2}}x-{{\sin }^{2}}-1}{\sqrt{{{x}^{2}}+1}-1},x\ne 0 \\
& k\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,x=0 \\
\end{align} \right.\] is continuous at $x=0$, find $k$.
Answer
585.6k+ views
Hint: A function $f(x)$ is continuous at $x=c$($c$ being any arbitrary constant), only if the left hand limit of $f(x)$at $x=c$(x tending to c from the negative side), the right hand limit of $f(x)$ at $x=c$(x tending to c from the positive side) and $f(c)$ are all equal.
Complete step-by-step answer:
Mathematically, if $f(x)$ is continuous at $x=c$,
$\displaystyle \lim_{x \to {{c}^{-}}}f(x)=f(c)=\displaystyle \lim_{x \to {{c}^{+}}}f(x)$
In the question when x tends to zero, finding the value of limit from either of the two sides will suffice, as both of them are equal. That is, $\displaystyle \lim_{x \to {{0}^{-}}}f(x)=\displaystyle \lim_{x \to {{0}^{+}}}f(x)=\displaystyle \lim_{x \to 0}f(x)$
We have,
\[f(x)=\left\{ \begin{align}
& \dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x-1}{\sqrt{{{x}^{2}}+1}-1},x\ne 0 \\
& k\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,x=0 \\
\end{align} \right.\]is continuous at $x=0$.
We know that, $\displaystyle \lim_{x \to {{c}^{-}}}f(x)=f(c)=\displaystyle \lim_{x \to {{c}^{+}}}f(x)$
At $x=0$,
$f(x)=f(0)=k................(1)$
In this case, the left hand limit is equal to the right hand limit.
Hence, on taking the limits for x tending to 0, we get,
$\displaystyle \lim_{x \to 0}f(x)=\displaystyle \lim_{x \to 0}\dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x-1}{\sqrt{{{x}^{2}}+1}-1}$
We know the trigonometric identity$\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$. Using this trigonometric identity the above equation becomes
$\displaystyle \lim_{x \to 0}f(x)=\displaystyle \lim_{x \to 0}\dfrac{\cos 2x-1}{\sqrt{{{x}^{2}}+1}-1}$
We also know the trigonometric identity$\cos 2x=1-2{{\sin }^{2}}x$. Using this trigonometric identity we obtain
$\displaystyle \lim_{x \to 0}f(x)=\displaystyle \lim_{x \to 0}\dfrac{-2{{\sin }^{2}}x}{\sqrt{{{x}^{2}}+1}-1}$
On rationalizing,
$\displaystyle \lim_{x \to 0}f(x)=\displaystyle \lim_{x \to 0}\dfrac{-2{{\sin }^{2}}x}{\sqrt{{{x}^{2}}+1}-1}\left( \dfrac{\sqrt{{{x}^{2}}+1}+1}{\sqrt{{{x}^{2}}+1}+1} \right)$
Using the algebraic identity ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$ in the denominator,
$\displaystyle \lim_{x \to 0}f(x)=\displaystyle \lim_{x \to 0}\dfrac{-2{{\sin }^{2}}x\left( \sqrt{{{x}^{2}}+1}+1 \right)}{{{x}^{2}}+1-1}$
$=-2\displaystyle \lim_{x \to 0}\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\left( \sqrt{{{x}^{2}}+1}+1 \right)$
$=-2\displaystyle \lim_{x \to 0}{{\left( \dfrac{\sin x}{x} \right)}^{2}}\left( \sqrt{{{x}^{2}}+1}+1 \right)$
We know that, $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$
On substituting $x$ with zero and $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}$ as 1 the equation becomes,
\[\displaystyle \lim_{x \to 0}f(x)=-2{{(1)}^{2}}\left( \sqrt{{{0}^{2}}+1}+1 \right)\]
\[\therefore \displaystyle \lim_{x \to 0}f(x)=-2\times 2=-4\,\,\,.................(2)\]
Since $\displaystyle \lim_{x \to {{c}^{-}}}f(x)=f(c)=\displaystyle \lim_{x \to {{c}^{+}}}f(x)$, equation (1) is equal to equation (2).
In other words,
$\displaystyle \lim_{x \to 0}f(x)=f(0)$
$\therefore k=-4$
Hence, the value of k when \[f(x)=\left\{ \begin{align}
& \dfrac{{{\cos }^{2}}x-{{\sin }^{2}}-1}{\sqrt{{{x}^{2}}+1}-1},x\ne 0 \\
& k\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,x=0 \\
\end{align} \right.\] is continuous at x is equal to -4.
Note: Alternate method:
We can solve for the limit value using L hospitals’ rule as well.
Consider the equation $\displaystyle \lim_{x \to c}\dfrac{f(x)}{g(x)}$
According to L hospitals’ rule, whenever an infinity condition occurs (a divided by zero condition, that is, when the denominator tends to zero), we have to differentiate the numerator and denominator separately and then substitute for x. In the above equation, if g(c) is equal to zero we have an infinity condition. Then, using L hospitals’ rule,
\[\displaystyle \lim_{x \to 0}\dfrac{f(x)}{g(x)}=~\displaystyle \lim_{x \to 0}\dfrac{\dfrac{d}{dx}\left( f(x) \right)}{\dfrac{d}{dx}\left( g(x) \right)}\]
If the infinity condition persists we can continue the chain of differentiation.
Mathematically,
\[\displaystyle \lim_{x \to 0}\dfrac{f(x)}{g(x)}=~\displaystyle \lim_{x \to 0}\dfrac{\dfrac{d}{dx}\left( f(x) \right)}{\dfrac{d}{dx}\left( g(x) \right)}=~\displaystyle \lim_{x \to 0}\dfrac{\dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( f(x) \right)}{\dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( g(x) \right)}=\displaystyle \lim_{x \to 0}\dfrac{\dfrac{{{d}^{3}}}{d{{x}^{3}}}\left( f(x) \right)}{\dfrac{{{d}^{3}}}{d{{x}^{3}}}\left( g(x) \right)}\,...........\,\]and so on.
Complete step-by-step answer:
Mathematically, if $f(x)$ is continuous at $x=c$,
$\displaystyle \lim_{x \to {{c}^{-}}}f(x)=f(c)=\displaystyle \lim_{x \to {{c}^{+}}}f(x)$
In the question when x tends to zero, finding the value of limit from either of the two sides will suffice, as both of them are equal. That is, $\displaystyle \lim_{x \to {{0}^{-}}}f(x)=\displaystyle \lim_{x \to {{0}^{+}}}f(x)=\displaystyle \lim_{x \to 0}f(x)$
We have,
\[f(x)=\left\{ \begin{align}
& \dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x-1}{\sqrt{{{x}^{2}}+1}-1},x\ne 0 \\
& k\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,x=0 \\
\end{align} \right.\]is continuous at $x=0$.
We know that, $\displaystyle \lim_{x \to {{c}^{-}}}f(x)=f(c)=\displaystyle \lim_{x \to {{c}^{+}}}f(x)$
At $x=0$,
$f(x)=f(0)=k................(1)$
In this case, the left hand limit is equal to the right hand limit.
Hence, on taking the limits for x tending to 0, we get,
$\displaystyle \lim_{x \to 0}f(x)=\displaystyle \lim_{x \to 0}\dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x-1}{\sqrt{{{x}^{2}}+1}-1}$
We know the trigonometric identity$\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$. Using this trigonometric identity the above equation becomes
$\displaystyle \lim_{x \to 0}f(x)=\displaystyle \lim_{x \to 0}\dfrac{\cos 2x-1}{\sqrt{{{x}^{2}}+1}-1}$
We also know the trigonometric identity$\cos 2x=1-2{{\sin }^{2}}x$. Using this trigonometric identity we obtain
$\displaystyle \lim_{x \to 0}f(x)=\displaystyle \lim_{x \to 0}\dfrac{-2{{\sin }^{2}}x}{\sqrt{{{x}^{2}}+1}-1}$
On rationalizing,
$\displaystyle \lim_{x \to 0}f(x)=\displaystyle \lim_{x \to 0}\dfrac{-2{{\sin }^{2}}x}{\sqrt{{{x}^{2}}+1}-1}\left( \dfrac{\sqrt{{{x}^{2}}+1}+1}{\sqrt{{{x}^{2}}+1}+1} \right)$
Using the algebraic identity ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$ in the denominator,
$\displaystyle \lim_{x \to 0}f(x)=\displaystyle \lim_{x \to 0}\dfrac{-2{{\sin }^{2}}x\left( \sqrt{{{x}^{2}}+1}+1 \right)}{{{x}^{2}}+1-1}$
$=-2\displaystyle \lim_{x \to 0}\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\left( \sqrt{{{x}^{2}}+1}+1 \right)$
$=-2\displaystyle \lim_{x \to 0}{{\left( \dfrac{\sin x}{x} \right)}^{2}}\left( \sqrt{{{x}^{2}}+1}+1 \right)$
We know that, $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$
On substituting $x$ with zero and $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}$ as 1 the equation becomes,
\[\displaystyle \lim_{x \to 0}f(x)=-2{{(1)}^{2}}\left( \sqrt{{{0}^{2}}+1}+1 \right)\]
\[\therefore \displaystyle \lim_{x \to 0}f(x)=-2\times 2=-4\,\,\,.................(2)\]
Since $\displaystyle \lim_{x \to {{c}^{-}}}f(x)=f(c)=\displaystyle \lim_{x \to {{c}^{+}}}f(x)$, equation (1) is equal to equation (2).
In other words,
$\displaystyle \lim_{x \to 0}f(x)=f(0)$
$\therefore k=-4$
Hence, the value of k when \[f(x)=\left\{ \begin{align}
& \dfrac{{{\cos }^{2}}x-{{\sin }^{2}}-1}{\sqrt{{{x}^{2}}+1}-1},x\ne 0 \\
& k\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,x=0 \\
\end{align} \right.\] is continuous at x is equal to -4.
Note: Alternate method:
We can solve for the limit value using L hospitals’ rule as well.
Consider the equation $\displaystyle \lim_{x \to c}\dfrac{f(x)}{g(x)}$
According to L hospitals’ rule, whenever an infinity condition occurs (a divided by zero condition, that is, when the denominator tends to zero), we have to differentiate the numerator and denominator separately and then substitute for x. In the above equation, if g(c) is equal to zero we have an infinity condition. Then, using L hospitals’ rule,
\[\displaystyle \lim_{x \to 0}\dfrac{f(x)}{g(x)}=~\displaystyle \lim_{x \to 0}\dfrac{\dfrac{d}{dx}\left( f(x) \right)}{\dfrac{d}{dx}\left( g(x) \right)}\]
If the infinity condition persists we can continue the chain of differentiation.
Mathematically,
\[\displaystyle \lim_{x \to 0}\dfrac{f(x)}{g(x)}=~\displaystyle \lim_{x \to 0}\dfrac{\dfrac{d}{dx}\left( f(x) \right)}{\dfrac{d}{dx}\left( g(x) \right)}=~\displaystyle \lim_{x \to 0}\dfrac{\dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( f(x) \right)}{\dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( g(x) \right)}=\displaystyle \lim_{x \to 0}\dfrac{\dfrac{{{d}^{3}}}{d{{x}^{3}}}\left( f(x) \right)}{\dfrac{{{d}^{3}}}{d{{x}^{3}}}\left( g(x) \right)}\,...........\,\]and so on.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

