
If $f(x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}$ then \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] is equal to
A. $997$
B. $997.5$
C. $998$
D. $998.5$
Answer
587.1k+ views
Hint:Hint: We need to find the value of \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] . First we have to get a relation between $f(x)$ and $f(1-x)$ . Put the value of $x$ as $(1-x)$ in $f(x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}$ . Now add $f(x)$ and $f(1-x)$ . Rearrange the equation \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] in the form $f(x)+f(1-x)$ . There will be $997$ such terms plus $f\left( \dfrac{998}{1996} \right)$ . Simplify further and by substituting in $f(x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}$ we will get the value of $f\left( \dfrac{998}{1996} \right)$ or $f\left( \dfrac{1}{2} \right)$ .
Complete step by step answer:
We need to find the value of \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] given that $f(x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}...(i)$ .
First let us find $f(1-x)$ . For this, replace $x$ by $1-x$ in equation $(i)$ .
Therefore, \[f(1-x)=\dfrac{{{9}^{1-x}}}{{{9}^{1-x}}+3}\] .
We know that ${{a}^{m+n}}={{a}^{m}}{{a}^{n}}$ . So the above equation can be written as
Therefore, \[f(1-x)=\dfrac{9\times {{9}^{-x}}}{\left( 9\times {{9}^{-x}} \right)+3}\] .
Now taking ${{9}^{-x}}$ common from denominator, we get
\[f(1-x)=\dfrac{9\times {{9}^{-x}}}{{{9}^{-x}}\left( 9+\dfrac{3}{{{9}^{-x}}} \right)}\]
Now cancelling ${{9}^{-x}}$ from numerator and denominator, we get
\[f(1-x)=\dfrac{9}{\left( 9+3\times {{9}^{x}} \right)}\]
Now, take $3$ common from the denominator terms. We get
\[f(1-x)=\dfrac{9}{3(3+{{9}^{x}})}\]
Cancelling $3$ from numerator and denominator, we get
\[f(1-x)=\dfrac{3}{(3+{{9}^{x}})}\]
Now let us find $f(x)+f(1-x)$ .
That is, $f(x)+f(1-x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}+\dfrac{3}{(3+{{9}^{x}})}$
Adding, we get
$f(x)+f(1-x)=\dfrac{{{9}^{x}}+3}{{{9}^{x}}+3}$
Cancelling the numerator and denominator, we get
$f(x)+f(1-x)=1...(a)$
Now consider \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] . The first and last term are of the form in equation $(a)$ .
Therefore, we can group it in the form \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{1995}{1996} \right)+f\left( \dfrac{2}{1996} \right)+f\left( \dfrac{1994}{1996} \right)+...\]
i.e. \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{1995}{1996} \right)+f\left( \dfrac{2}{1996} \right)+f\left( \dfrac{1994}{1996} \right)+...\]
i.e. $1+1+....$
We need to find how many such pairs will be there. For that we take \[1995\] and divide it by $2$ .
So there will be $997$ such pairs and one pair will be left alone.
i.e. $1+1+....+1+f\left( \dfrac{998}{1996} \right)$ \[\]
$=997+f\left( \dfrac{998}{1996} \right)$
Dividing $\dfrac{998}{1996}$ , we get
$997+f\left( \dfrac{1}{2} \right)$
To get the value of $f\left( \dfrac{1}{2} \right)$ substitute $x=\dfrac{1}{2}$ in equation $(i)$ .
i.e. $997+\dfrac{{{9}^{\dfrac{1}{2}}}}{{{9}^{\dfrac{1}{2}}}+3}$
Solving the root terms, we get
$997+\dfrac{3}{3+3}$
Further simplifying, we get
$997+\dfrac{3}{6}=997+\dfrac{1}{2}$
$=997+0.5$
$=997.5$
Hence, the correct option is B.
Note:
$f(x)+f(1-x)=1$ is the base of this problem. The last step few steps can also be done in the following way:
We need to find how many such pairs will be there. For that, we take \[1995\] and divide it by $2$ .
So the answer will be $997.5$ .
Complete step by step answer:
We need to find the value of \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] given that $f(x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}...(i)$ .
First let us find $f(1-x)$ . For this, replace $x$ by $1-x$ in equation $(i)$ .
Therefore, \[f(1-x)=\dfrac{{{9}^{1-x}}}{{{9}^{1-x}}+3}\] .
We know that ${{a}^{m+n}}={{a}^{m}}{{a}^{n}}$ . So the above equation can be written as
Therefore, \[f(1-x)=\dfrac{9\times {{9}^{-x}}}{\left( 9\times {{9}^{-x}} \right)+3}\] .
Now taking ${{9}^{-x}}$ common from denominator, we get
\[f(1-x)=\dfrac{9\times {{9}^{-x}}}{{{9}^{-x}}\left( 9+\dfrac{3}{{{9}^{-x}}} \right)}\]
Now cancelling ${{9}^{-x}}$ from numerator and denominator, we get
\[f(1-x)=\dfrac{9}{\left( 9+3\times {{9}^{x}} \right)}\]
Now, take $3$ common from the denominator terms. We get
\[f(1-x)=\dfrac{9}{3(3+{{9}^{x}})}\]
Cancelling $3$ from numerator and denominator, we get
\[f(1-x)=\dfrac{3}{(3+{{9}^{x}})}\]
Now let us find $f(x)+f(1-x)$ .
That is, $f(x)+f(1-x)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}+\dfrac{3}{(3+{{9}^{x}})}$
Adding, we get
$f(x)+f(1-x)=\dfrac{{{9}^{x}}+3}{{{9}^{x}}+3}$
Cancelling the numerator and denominator, we get
$f(x)+f(1-x)=1...(a)$
Now consider \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+...f\left( \dfrac{1995}{1996} \right)\] . The first and last term are of the form in equation $(a)$ .
Therefore, we can group it in the form \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{1995}{1996} \right)+f\left( \dfrac{2}{1996} \right)+f\left( \dfrac{1994}{1996} \right)+...\]
i.e. \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{1995}{1996} \right)+f\left( \dfrac{2}{1996} \right)+f\left( \dfrac{1994}{1996} \right)+...\]
i.e. $1+1+....$
We need to find how many such pairs will be there. For that we take \[1995\] and divide it by $2$ .
So there will be $997$ such pairs and one pair will be left alone.
i.e. $1+1+....+1+f\left( \dfrac{998}{1996} \right)$ \[\]
$=997+f\left( \dfrac{998}{1996} \right)$
Dividing $\dfrac{998}{1996}$ , we get
$997+f\left( \dfrac{1}{2} \right)$
To get the value of $f\left( \dfrac{1}{2} \right)$ substitute $x=\dfrac{1}{2}$ in equation $(i)$ .
i.e. $997+\dfrac{{{9}^{\dfrac{1}{2}}}}{{{9}^{\dfrac{1}{2}}}+3}$
Solving the root terms, we get
$997+\dfrac{3}{3+3}$
Further simplifying, we get
$997+\dfrac{3}{6}=997+\dfrac{1}{2}$
$=997+0.5$
$=997.5$
Hence, the correct option is B.
Note:
$f(x)+f(1-x)=1$ is the base of this problem. The last step few steps can also be done in the following way:
We need to find how many such pairs will be there. For that, we take \[1995\] and divide it by $2$ .
So the answer will be $997.5$ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

