
If \[f(x)\] is monotonically increasing function \[\forall x \in R\] , \[{f^{''}}(x) > 0\] and \[{f^{ - 1}}(x)\] exists, then \[\dfrac{{{f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3})}}{3} < {f^{ - 1}}\dfrac{{({x_1} + {x_2} + {x_3})}}{3}\] , \[{x_1} \ne {x_2} \ne {x_3}\] is true/false ?
Answer
597.9k+ views
Hint: While working with monotonically increasing types of questions, always arrange the elements in increasing order, because \[f(x)\] increases as \[x\] increases in a monotonically increasing function. Also when inverse of a function exists it also follows the same rule i.e. as \[x\] increases \[ \Rightarrow \] \[f(x)\] increases \[ \Rightarrow \]\[{f^{ - 1}}(x)\] increases.
Complete step-by-step answer:
Given, \[f(x)\] is monotonically increasing function \[\forall x \in R\]
\[ \Rightarrow f(x)\] increases as \[x\] increases \[...(i)\]
Considering three numbers \[{x_1},{x_2},{x_3}\] such that \[{x_1} \ne {x_2} \ne {x_3}\]
Since \[f(x)\] is monotonically increasing function \[\forall x \in R\]
Then \[f(x)\] is monotonically increasing function for \[{x_1},{x_2},{x_3} \in R\]
Monotonically increasing function implies from equation \[(i)\] that
\[{x_1} < {x_2} < {x_3} \Rightarrow f({x_1}) < f({x_2}) < f({x_3})\] \[...(ii)\]
(Here we are not taking the case of \[{x_1} \leqslant {x_2} \leqslant {x_3}\] because we are clearly given \[{x_1} \ne {x_2} \ne {x_3}\]
Clearly \[{x_1} + {x_2} + {x_3} > {x_1}\]
\[{x_1} + {x_2} + {x_3} > {x_2}\]
\[{x_1} + {x_2} + {x_3} > {x_3}\] \[...(iii)\]
Therefore, dividing equation \[(iii)\] by \[3\] on both sides , we get
\[\dfrac{{{x_1} + {x_2} + {x_3}}}{3} > \dfrac{{{x_1}}}{3}\]
\[\dfrac{{{x_1} + {x_2} + {x_3}}}{3} > \dfrac{{{x_2}}}{3}\]
\[\dfrac{{{x_1} + {x_2} + {x_3}}}{3} > \dfrac{{{x_3}}}{3}\] \[...(iv)\]
Since, \[f(x)\] is monotonically increasing function \[\forall x \in R\] , also we know \[{f^{ - 1}}(x)\] exists
Therefore, \[{f^{ - 1}}(x)\] is also monotonically increasing function \[\forall x \in R\]
i.e. \[{x_1} < {x_2} < {x_3} \Rightarrow {f^{ - 1}}({x_1}) < {f^{ - 1}}({x_2}) < {f^{ - 1}}({x_3})\] \[...(v)\]
Taking inverse function with the help of equation \[(v)\] on both sides of equation \[(iv)\];
\[\dfrac{{{f^{ - 1}}({x_1})}}{3} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
\[\dfrac{{{f^{ - 1}}({x_2})}}{3} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
\[\dfrac{{{f^{ - 1}}({x_3})}}{3} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\] \[...(vi)\]
Also we have
\[\dfrac{{{f^{ - 1}}({x_1})}}{3} < {f^{ - 1}}({x_1})\]
\[\dfrac{{{f^{ - 1}}({x_2})}}{3} < {f^{ - 1}}({x_2})\]
\[\dfrac{{{f^{ - 1}}({x_3})}}{3} < {f^{ - 1}}({x_3})\] \[...(vii)\]
From equation \[(vi)\]and equation \[(vii)\], we get
\[\dfrac{{{f^{ - 1}}({x_1})}}{3} + \dfrac{{{f^{ - 1}}({x_2})}}{3} + \dfrac{{{f^{ - 1}}({x_3})}}{3} < {f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3}) < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right) + {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right) + {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
i.e. \[{f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3}) < 3{f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
i.e. \[\dfrac{{{f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3})}}{3} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
Therefore the given value is TRUE.
NOTE: In these types of questions we always try to find a greater than or less than type of relation between \[x\] and \[f(x)\] . Sometimes a common mistake i.e. adding the values of equation \[(vi)\] straight causes a problem
i.e. \[\dfrac{{{f^{ - 1}}({x_1})}}{3} + \dfrac{{{f^{ - 1}}({x_2})}}{3} + \dfrac{{{f^{ - 1}}({x_3})}}{3} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right) + {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right) + {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
i.e. \[\dfrac{{{f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3})}}{3} < 3 \times {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
i.e. \[\dfrac{{{f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3})}}{{3 \times 3}} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
i.e. \[\dfrac{{{f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3})}}{9} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
Which is not what we are solving for in the above question.
Complete step-by-step answer:
Given, \[f(x)\] is monotonically increasing function \[\forall x \in R\]
\[ \Rightarrow f(x)\] increases as \[x\] increases \[...(i)\]
Considering three numbers \[{x_1},{x_2},{x_3}\] such that \[{x_1} \ne {x_2} \ne {x_3}\]
Since \[f(x)\] is monotonically increasing function \[\forall x \in R\]
Then \[f(x)\] is monotonically increasing function for \[{x_1},{x_2},{x_3} \in R\]
Monotonically increasing function implies from equation \[(i)\] that
\[{x_1} < {x_2} < {x_3} \Rightarrow f({x_1}) < f({x_2}) < f({x_3})\] \[...(ii)\]
(Here we are not taking the case of \[{x_1} \leqslant {x_2} \leqslant {x_3}\] because we are clearly given \[{x_1} \ne {x_2} \ne {x_3}\]
Clearly \[{x_1} + {x_2} + {x_3} > {x_1}\]
\[{x_1} + {x_2} + {x_3} > {x_2}\]
\[{x_1} + {x_2} + {x_3} > {x_3}\] \[...(iii)\]
Therefore, dividing equation \[(iii)\] by \[3\] on both sides , we get
\[\dfrac{{{x_1} + {x_2} + {x_3}}}{3} > \dfrac{{{x_1}}}{3}\]
\[\dfrac{{{x_1} + {x_2} + {x_3}}}{3} > \dfrac{{{x_2}}}{3}\]
\[\dfrac{{{x_1} + {x_2} + {x_3}}}{3} > \dfrac{{{x_3}}}{3}\] \[...(iv)\]
Since, \[f(x)\] is monotonically increasing function \[\forall x \in R\] , also we know \[{f^{ - 1}}(x)\] exists
Therefore, \[{f^{ - 1}}(x)\] is also monotonically increasing function \[\forall x \in R\]
i.e. \[{x_1} < {x_2} < {x_3} \Rightarrow {f^{ - 1}}({x_1}) < {f^{ - 1}}({x_2}) < {f^{ - 1}}({x_3})\] \[...(v)\]
Taking inverse function with the help of equation \[(v)\] on both sides of equation \[(iv)\];
\[\dfrac{{{f^{ - 1}}({x_1})}}{3} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
\[\dfrac{{{f^{ - 1}}({x_2})}}{3} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
\[\dfrac{{{f^{ - 1}}({x_3})}}{3} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\] \[...(vi)\]
Also we have
\[\dfrac{{{f^{ - 1}}({x_1})}}{3} < {f^{ - 1}}({x_1})\]
\[\dfrac{{{f^{ - 1}}({x_2})}}{3} < {f^{ - 1}}({x_2})\]
\[\dfrac{{{f^{ - 1}}({x_3})}}{3} < {f^{ - 1}}({x_3})\] \[...(vii)\]
From equation \[(vi)\]and equation \[(vii)\], we get
\[\dfrac{{{f^{ - 1}}({x_1})}}{3} + \dfrac{{{f^{ - 1}}({x_2})}}{3} + \dfrac{{{f^{ - 1}}({x_3})}}{3} < {f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3}) < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right) + {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right) + {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
i.e. \[{f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3}) < 3{f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
i.e. \[\dfrac{{{f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3})}}{3} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
Therefore the given value is TRUE.
NOTE: In these types of questions we always try to find a greater than or less than type of relation between \[x\] and \[f(x)\] . Sometimes a common mistake i.e. adding the values of equation \[(vi)\] straight causes a problem
i.e. \[\dfrac{{{f^{ - 1}}({x_1})}}{3} + \dfrac{{{f^{ - 1}}({x_2})}}{3} + \dfrac{{{f^{ - 1}}({x_3})}}{3} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right) + {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right) + {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
i.e. \[\dfrac{{{f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3})}}{3} < 3 \times {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
i.e. \[\dfrac{{{f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3})}}{{3 \times 3}} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
i.e. \[\dfrac{{{f^{ - 1}}({x_1}) + {f^{ - 1}}({x_2}) + {f^{ - 1}}({x_3})}}{9} < {f^{ - 1}}\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)\]
Which is not what we are solving for in the above question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

