
If f(x) is a polynomial satisfying $f\left( x \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right)$ for all $x\in R$ and $f\left( 3 \right)=-26$ , then find $f\left( 4 \right)$ .
(a) -35
(b) -63
(c) 65
(d) None of these
Answer
501.9k+ views
Hint: Firstly, we have to find the polynomial that satisfies $f\left( x \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right)$ . For this, we will rearrange this equation and find f(x) in terms of $f\left( \dfrac{1}{x} \right)$ and $f\left( \dfrac{1}{x} \right)$ in terms of f(x). Then, we will multiply these two equations and simplify. We will then substitute $g\left( x \right)=f\left( x \right)-1$ and simplify the equation accordingly which will result in an equation of the form $g\left( x \right)g\left( \dfrac{1}{x} \right)=1$ . We will assume $g\left( x \right)=\pm {{x}^{n}}$ and find the value of f(x). We will get two values for f(x) because of the $\pm $ sign. From the given result, $f\left( 3 \right)=-26$ , we will get the right value of the function f(x). Finally, we have to find the value of f(4) by substituting $x=4$ in this polynomial.
Complete step by step answer:
We are given that f(x) is a polynomial satisfying $f\left( x \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right)$ . We have to find this polynomial. Let us consider $f\left( x \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right)...\left( i \right)$ .
We have to take f(x) from the RHS to the LHS.
$\Rightarrow f\left( x \right)f\left( \dfrac{1}{x} \right)-f\left( x \right)=f\left( \dfrac{1}{x} \right)$
We have to take the common term outside.
$\Rightarrow f\left( x \right)\left( f\left( \dfrac{1}{x} \right)-1 \right)=f\left( \dfrac{1}{x} \right)$
Let us take the coefficient of f(x) to the RHS.
$\Rightarrow f\left( x \right)=\dfrac{f\left( \dfrac{1}{x} \right)}{f\left( \dfrac{1}{x} \right)-1}...\left( ii \right)$
Now, let us take $f\left( \dfrac{1}{x} \right)$ from the RHS to the LHS in equation (i).
$\Rightarrow f\left( x \right)f\left( \dfrac{1}{x} \right)-f\left( \dfrac{1}{x} \right)=f\left( x \right)$
We have to take the common term outside.
$\Rightarrow \left( f\left( x \right)-1 \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)$
Let us take the coefficient of $f\left( \dfrac{1}{x} \right)$ to the RHS.
$\Rightarrow f\left( \dfrac{1}{x} \right)=\dfrac{f\left( x \right)}{f\left( x \right)-1}...\left( iii \right)$
Now, we have to multiply (ii) and (iii).
$\begin{align}
& \Rightarrow f\left( x \right)f\left( \dfrac{1}{x} \right)=\dfrac{f\left( \dfrac{1}{x} \right)}{f\left( \dfrac{1}{x} \right)-1}\left( \dfrac{f\left( x \right)}{f\left( x \right)-1} \right) \\
& \Rightarrow \require{cancel}\cancel{f\left( x \right)f\left( \dfrac{1}{x} \right)}=\dfrac{\require{cancel}\cancel{f\left( \dfrac{1}{x} \right)f\left( x \right)}}{\left[ f\left( \dfrac{1}{x} \right)-1 \right]\left( f\left( x \right)-1 \right)} \\
& \Rightarrow 1=\dfrac{1}{\left[ f\left( \dfrac{1}{x} \right)-1 \right]\left( f\left( x \right)-1 \right)} \\
\end{align}$
Let us move the denominator of the RHS to the LHS.
$\Rightarrow \left[ f\left( x \right)-1 \right]\left[ f\left( \dfrac{1}{x} \right)-1 \right]=1...\left( iv \right)$
Let us assume $g\left( x \right)=f\left( x \right)-1...\left( v \right)$ .
Then, we can find $g\left( \dfrac{1}{x} \right)$ by substituting $x=\dfrac{1}{x}$ in this equation.
$\Rightarrow g\left( \dfrac{1}{x} \right)=f\left( \dfrac{1}{x} \right)-1...\left( vi \right)$
Let us substitute (v) and (vi) in equation (iv).
$\Rightarrow g\left( x \right)g\left( \dfrac{1}{x} \right)=1$
If we assume g(x) to be a polynomial, $g\left( x \right)=\pm {{x}^{n}}$ , the above condition will be satisfied. Let us substitute this value of g(x) in the equation (v).
$\begin{align}
& \Rightarrow \pm {{x}^{n}}=f\left( x \right)-1 \\
& \Rightarrow f\left( x \right)=1\pm {{x}^{n}}...\left( vii \right) \\
\end{align}$
Therefore, we obtained a polynomial f(x) satisfying $f\left( x \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right)$ . We can consider two values for x as positive or negative. Therefore, the polynomial will be either $f\left( x \right)=1+{{x}^{n}}$ or $f\left( x \right)=1-{{x}^{n}}$ . We are given that $f\left( 3 \right)=-26$ . Let us substitute $x=3$ in each of this polynomial.
$\begin{align}
& \Rightarrow f\left( x \right)=1+{{x}^{n}} \\
& \Rightarrow f\left( 3 \right)=1+{{3}^{n}} \\
& \Rightarrow -26=1+{{3}^{n}} \\
& \Rightarrow -26-1={{3}^{n}} \\
& \Rightarrow -27={{3}^{n}} \\
\end{align}$
We can write -27 in terms of powers of 3.
$\Rightarrow -{{3}^{9}}={{3}^{n}}$
We cannot compare the exponents of similar bases in the above equation since the LHS contains a negative sign. Therefore, $f\left( x \right)=1+{{x}^{n}}$ is not a polynomial.
Now, let us consider $f\left( x \right)=1-{{x}^{n}}$ .
$\begin{align}
& \Rightarrow f\left( 3 \right)=1-{{3}^{n}} \\
& \Rightarrow -26=1-{{3}^{n}} \\
& \Rightarrow -26-1=-{{3}^{n}} \\
& \Rightarrow \require{cancel}\cancel{-}27=\require{cancel}\cancel{-}{{3}^{n}} \\
& \Rightarrow 27={{3}^{n}} \\
\end{align}$
We can write -27 in terms of powers of 3.
$\Rightarrow {{3}^{3}}={{3}^{n}}$
When, comparing the exponents of similar bases, we will get
$\Rightarrow n=3$
Therefore, the polynomial satisfying $f\left( x \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right)$ is $f\left( x \right)=1-{{x}^{3}}$ . Now, let us find $f\left( 4 \right)$ by substituting for x as 4 in the above polynomial.
$\begin{align}
& \Rightarrow f\left( 4 \right)=1-{{4}^{3}} \\
& \Rightarrow f\left( 4 \right)=1-64 \\
& \Rightarrow f\left( 4 \right)=-63 \\
\end{align}$
So, the correct answer is “Option b”.
Note: Students must be through with the concept of algebra and exponents. They must also know to find the value of a function for a given value of its variable. Students can also find the polynomial f(x) using trial and error method. This is shown below.
We are given with $f\left( 3 \right)=-26$ . Let us substitute $x=3$ in $f\left( x \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right)$ .
$\begin{align}
& \Rightarrow f\left( 3 \right)f\left( \dfrac{1}{3} \right)=f\left( 3 \right)+f\left( \dfrac{1}{3} \right) \\
& \Rightarrow -26\times f\left( \dfrac{1}{3} \right)=-26+f\left( \dfrac{1}{3} \right) \\
\end{align}$
Let us take $f\left( \dfrac{1}{3} \right)$ to the LHS.
$\begin{align}
& \Rightarrow -26\times f\left( \dfrac{1}{3} \right)-f\left( \dfrac{1}{3} \right)=-26 \\
& \Rightarrow \left( -26-1 \right)f\left( \dfrac{1}{3} \right)=-26 \\
& \Rightarrow -27\times f\left( \dfrac{1}{3} \right)=-26 \\
\end{align}$
Let us move the coefficient of $f\left( \dfrac{1}{x} \right)$ to the RHS.
$\begin{align}
& \Rightarrow f\left( \dfrac{1}{3} \right)=\dfrac{-26}{-27} \\
& \Rightarrow f\left( \dfrac{1}{3} \right)=\dfrac{26}{27}...\left( a \right) \\
\end{align}$
We can guess that $f\left( 3 \right)=-{{3}^{3}}+1=-26$ . Therefore, we can find $f\left( \dfrac{1}{3} \right)$ in similar way as
$\begin{align}
& \Rightarrow f\left( \dfrac{1}{3} \right)=-{{\left( \dfrac{1}{3} \right)}^{3}}+1 \\
& \Rightarrow f\left( \dfrac{1}{3} \right)=-\dfrac{1}{27}+1 \\
& \Rightarrow f\left( \dfrac{1}{3} \right)=\dfrac{-1+27}{27} \\
& \Rightarrow f\left( \dfrac{1}{3} \right)=\dfrac{26}{27}...\left( b \right) \\
\end{align}$
We can see that (a) and (b) are equal. Hence, the polynomial will be $f\left( x \right)=1-{{x}^{3}}$ .
Complete step by step answer:
We are given that f(x) is a polynomial satisfying $f\left( x \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right)$ . We have to find this polynomial. Let us consider $f\left( x \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right)...\left( i \right)$ .
We have to take f(x) from the RHS to the LHS.
$\Rightarrow f\left( x \right)f\left( \dfrac{1}{x} \right)-f\left( x \right)=f\left( \dfrac{1}{x} \right)$
We have to take the common term outside.
$\Rightarrow f\left( x \right)\left( f\left( \dfrac{1}{x} \right)-1 \right)=f\left( \dfrac{1}{x} \right)$
Let us take the coefficient of f(x) to the RHS.
$\Rightarrow f\left( x \right)=\dfrac{f\left( \dfrac{1}{x} \right)}{f\left( \dfrac{1}{x} \right)-1}...\left( ii \right)$
Now, let us take $f\left( \dfrac{1}{x} \right)$ from the RHS to the LHS in equation (i).
$\Rightarrow f\left( x \right)f\left( \dfrac{1}{x} \right)-f\left( \dfrac{1}{x} \right)=f\left( x \right)$
We have to take the common term outside.
$\Rightarrow \left( f\left( x \right)-1 \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)$
Let us take the coefficient of $f\left( \dfrac{1}{x} \right)$ to the RHS.
$\Rightarrow f\left( \dfrac{1}{x} \right)=\dfrac{f\left( x \right)}{f\left( x \right)-1}...\left( iii \right)$
Now, we have to multiply (ii) and (iii).
$\begin{align}
& \Rightarrow f\left( x \right)f\left( \dfrac{1}{x} \right)=\dfrac{f\left( \dfrac{1}{x} \right)}{f\left( \dfrac{1}{x} \right)-1}\left( \dfrac{f\left( x \right)}{f\left( x \right)-1} \right) \\
& \Rightarrow \require{cancel}\cancel{f\left( x \right)f\left( \dfrac{1}{x} \right)}=\dfrac{\require{cancel}\cancel{f\left( \dfrac{1}{x} \right)f\left( x \right)}}{\left[ f\left( \dfrac{1}{x} \right)-1 \right]\left( f\left( x \right)-1 \right)} \\
& \Rightarrow 1=\dfrac{1}{\left[ f\left( \dfrac{1}{x} \right)-1 \right]\left( f\left( x \right)-1 \right)} \\
\end{align}$
Let us move the denominator of the RHS to the LHS.
$\Rightarrow \left[ f\left( x \right)-1 \right]\left[ f\left( \dfrac{1}{x} \right)-1 \right]=1...\left( iv \right)$
Let us assume $g\left( x \right)=f\left( x \right)-1...\left( v \right)$ .
Then, we can find $g\left( \dfrac{1}{x} \right)$ by substituting $x=\dfrac{1}{x}$ in this equation.
$\Rightarrow g\left( \dfrac{1}{x} \right)=f\left( \dfrac{1}{x} \right)-1...\left( vi \right)$
Let us substitute (v) and (vi) in equation (iv).
$\Rightarrow g\left( x \right)g\left( \dfrac{1}{x} \right)=1$
If we assume g(x) to be a polynomial, $g\left( x \right)=\pm {{x}^{n}}$ , the above condition will be satisfied. Let us substitute this value of g(x) in the equation (v).
$\begin{align}
& \Rightarrow \pm {{x}^{n}}=f\left( x \right)-1 \\
& \Rightarrow f\left( x \right)=1\pm {{x}^{n}}...\left( vii \right) \\
\end{align}$
Therefore, we obtained a polynomial f(x) satisfying $f\left( x \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right)$ . We can consider two values for x as positive or negative. Therefore, the polynomial will be either $f\left( x \right)=1+{{x}^{n}}$ or $f\left( x \right)=1-{{x}^{n}}$ . We are given that $f\left( 3 \right)=-26$ . Let us substitute $x=3$ in each of this polynomial.
$\begin{align}
& \Rightarrow f\left( x \right)=1+{{x}^{n}} \\
& \Rightarrow f\left( 3 \right)=1+{{3}^{n}} \\
& \Rightarrow -26=1+{{3}^{n}} \\
& \Rightarrow -26-1={{3}^{n}} \\
& \Rightarrow -27={{3}^{n}} \\
\end{align}$
We can write -27 in terms of powers of 3.
$\Rightarrow -{{3}^{9}}={{3}^{n}}$
We cannot compare the exponents of similar bases in the above equation since the LHS contains a negative sign. Therefore, $f\left( x \right)=1+{{x}^{n}}$ is not a polynomial.
Now, let us consider $f\left( x \right)=1-{{x}^{n}}$ .
$\begin{align}
& \Rightarrow f\left( 3 \right)=1-{{3}^{n}} \\
& \Rightarrow -26=1-{{3}^{n}} \\
& \Rightarrow -26-1=-{{3}^{n}} \\
& \Rightarrow \require{cancel}\cancel{-}27=\require{cancel}\cancel{-}{{3}^{n}} \\
& \Rightarrow 27={{3}^{n}} \\
\end{align}$
We can write -27 in terms of powers of 3.
$\Rightarrow {{3}^{3}}={{3}^{n}}$
When, comparing the exponents of similar bases, we will get
$\Rightarrow n=3$
Therefore, the polynomial satisfying $f\left( x \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right)$ is $f\left( x \right)=1-{{x}^{3}}$ . Now, let us find $f\left( 4 \right)$ by substituting for x as 4 in the above polynomial.
$\begin{align}
& \Rightarrow f\left( 4 \right)=1-{{4}^{3}} \\
& \Rightarrow f\left( 4 \right)=1-64 \\
& \Rightarrow f\left( 4 \right)=-63 \\
\end{align}$
So, the correct answer is “Option b”.
Note: Students must be through with the concept of algebra and exponents. They must also know to find the value of a function for a given value of its variable. Students can also find the polynomial f(x) using trial and error method. This is shown below.
We are given with $f\left( 3 \right)=-26$ . Let us substitute $x=3$ in $f\left( x \right)f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right)$ .
$\begin{align}
& \Rightarrow f\left( 3 \right)f\left( \dfrac{1}{3} \right)=f\left( 3 \right)+f\left( \dfrac{1}{3} \right) \\
& \Rightarrow -26\times f\left( \dfrac{1}{3} \right)=-26+f\left( \dfrac{1}{3} \right) \\
\end{align}$
Let us take $f\left( \dfrac{1}{3} \right)$ to the LHS.
$\begin{align}
& \Rightarrow -26\times f\left( \dfrac{1}{3} \right)-f\left( \dfrac{1}{3} \right)=-26 \\
& \Rightarrow \left( -26-1 \right)f\left( \dfrac{1}{3} \right)=-26 \\
& \Rightarrow -27\times f\left( \dfrac{1}{3} \right)=-26 \\
\end{align}$
Let us move the coefficient of $f\left( \dfrac{1}{x} \right)$ to the RHS.
$\begin{align}
& \Rightarrow f\left( \dfrac{1}{3} \right)=\dfrac{-26}{-27} \\
& \Rightarrow f\left( \dfrac{1}{3} \right)=\dfrac{26}{27}...\left( a \right) \\
\end{align}$
We can guess that $f\left( 3 \right)=-{{3}^{3}}+1=-26$ . Therefore, we can find $f\left( \dfrac{1}{3} \right)$ in similar way as
$\begin{align}
& \Rightarrow f\left( \dfrac{1}{3} \right)=-{{\left( \dfrac{1}{3} \right)}^{3}}+1 \\
& \Rightarrow f\left( \dfrac{1}{3} \right)=-\dfrac{1}{27}+1 \\
& \Rightarrow f\left( \dfrac{1}{3} \right)=\dfrac{-1+27}{27} \\
& \Rightarrow f\left( \dfrac{1}{3} \right)=\dfrac{26}{27}...\left( b \right) \\
\end{align}$
We can see that (a) and (b) are equal. Hence, the polynomial will be $f\left( x \right)=1-{{x}^{3}}$ .
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW


