
If f(x), g(x) and h(x) are three polynomials of degree 2 and \[\Delta \left( x \right)=\left( \begin{matrix}
f(x) & g(x) & h(x) \\
{f}'(x) & {g}'(x) & {h}'(x) \\
{f}''(x) & {g}''(x) & {h}''(x) \\
\end{matrix} \right)\] then the degree of polynomial \[\Delta \left( x \right)\] .
\[\begin{align}
& \text{A}\text{. 2} \\
& \text{B}\text{. 3} \\
& \text{C}\text{. 0} \\
& \text{D}\text{. 1} \\
\end{align}\]
Answer
561.6k+ views
Hint: Let us assume \[f(x)=a{{x}^{2}}+bx+c,g(x)=d{{x}^{2}}+ex+f,h(x)=g{{x}^{2}}+hx+i\]. Let us consider \[f(x)=a{{x}^{2}}+bx+c,g(x)=d{{x}^{2}}+ex+f,h(x)=g{{x}^{2}}+hx+i\] as equation (1), equation (2) and equation (3) respectively. Now we should find \[\text{{f}'(x)}\], \[\text{{g}'(x)}\] and \[\text{{h}'(x)}\]. Now we should find \[\text{{f}'''(x)}\], \[\text{{g}'''(x)}\] and \[\text{{h}'''(x)}\]. Now we should substitute all the values in \[\Delta \left( x \right)=\left( \begin{matrix}
f(x) & g(x) & h(x) \\
{f}'(x) & {g}'(x) & {h}'(x) \\
{f}''(x) & {g}''(x) & {h}''(x) \\
\end{matrix} \right)\]. Now we will find the determinant of \[\Delta \left( x \right)\].
Complete step-by-step solution
Let us assume \[f(x)=a{{x}^{2}}+bx+c,g(x)=d{{x}^{2}}+ex+f,h(x)=g{{x}^{2}}+hx+i\].
Now let us consider
\[\begin{align}
& f(x)=a{{x}^{2}}+bx+c......(1) \\
& g(x)=d{{x}^{2}}+ex+f......(2) \\
& h(x)=g{{x}^{2}}+hx+i.......(3) \\
\end{align}\]
Now let us differentiate equation (1) on both sides, then we get
\[\begin{align}
& \Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}\left( a{{x}^{2}}+bx+c \right) \\
& \Rightarrow {f}'\left( x \right)=2ax+b.....(4) \\
\end{align}\]
Now let us differentiate equation (2) on both sides, then we get
\[\begin{align}
& \Rightarrow {g}'\left( x \right)=\dfrac{d}{dx}\left( d{{x}^{2}}+ex+f \right) \\
& \Rightarrow {g}'\left( x \right)=2dx+e.....(5) \\
\end{align}\]
Now let us differentiate equation (3) on both sides, then we get
\[\begin{align}
& \Rightarrow {h}'\left( x \right)=\dfrac{d}{dx}\left( g{{x}^{2}}+hx+i \right) \\
& \Rightarrow {h}'\left( x \right)=2gx+h....(6) \\
\end{align}\]
Now let us differentiate equation (4) on both sides, then we get
\[\begin{align}
& \Rightarrow {f}''\left( x \right)=\dfrac{d}{dx}\left( 2ax+b \right) \\
& \Rightarrow {f}''\left( x \right)=2a.....(7) \\
\end{align}\]
Now let us differentiate equation (5) on both sides, then we get
\[\begin{align}
& \Rightarrow {g}''\left( x \right)=\dfrac{d}{dx}\left( 2dx+e \right) \\
& \Rightarrow {g}''\left( x \right)=2d.....(8) \\
\end{align}\]
Now let us differentiate equation (6) on both sides, then we get
\[\begin{align}
& \Rightarrow {h}''\left( x \right)=\dfrac{d}{dx}\left( 2gx+h \right) \\
& \Rightarrow {h}''\left( x \right)=2g.....(9) \\
\end{align}\]
Now we have to calculate the value of \[\Delta \left( x \right)=\left( \begin{matrix}
f(x) & g(x) & h(x) \\
{f}'(x) & {g}'(x) & {h}'(x) \\
{f}''(x) & {g}''(x) & {h}''(x) \\
\end{matrix} \right)\].
We know that \[\left( \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right)=a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-eg \right)\]. By using this concept, we should find the value of \[\Delta \left( x \right)\].
So, from this concept we should find the value of
\[\Rightarrow \Delta \left( x \right)=\left( \begin{matrix}
a{{x}^{2}}+bx+c & d{{x}^{2}}+ex+f & g{{x}^{2}}+hx+i \\
2ax+b & 2dx+e & 2gx+h \\
2a & 2d & 2g \\
\end{matrix} \right)\]
\[\begin{align}
& \Rightarrow \Delta \left( x \right)=\left( a{{x}^{2}}+bx+c \right)\left( \left( 2dx+e \right)\left( 2g \right)-\left( 2gx+h \right)\left( 2d \right) \right)-\left( d{{x}^{2}}+ex+f \right)\left( \left( 2ax+b \right)\left( 2g \right)-\left( 2gx+h \right)\left( 2a \right) \right) \\
& \text{ }+\left( g{{x}^{2}}+hx+i \right)\left( \left( 2ax+b \right)\left( 2d \right)-\left( 2dx+e \right)\left( 2a \right) \right) \\
& \Rightarrow \Delta \left( x \right)=\left( a{{x}^{2}}+bx+c \right)\left( \left( 4dgx+2ge \right)-\left( 4dgx+2hd \right) \right)-\left( d{{x}^{2}}+ex+f \right)\left( \left( 4agx+2bg \right)-\left( 4agx+2ah \right) \right) \\
& \text{ }+\left( g{{x}^{2}}+hx+i \right)\left( \left( 4adx+2bd \right)-\left( 4adx+2ea \right) \right) \\
& \Rightarrow \Delta \left( x \right)=\left( a{{x}^{2}}+bx+c \right)\left( 2ge-2hd \right)-\left( d{{x}^{2}}+ex+f \right)\left( 2bg-2ah \right)+\left( g{{x}^{2}}+hx+i \right)\left( 2bd-2ea \right) \\
\end{align}\]
Now let us separate the coefficients of \[{{x}^{2}},x\]and constant. Now we will simply each and every term, then we get
\[\begin{align}
& \Rightarrow \Delta \left( x \right)=\left( 2aeg-2ahd-2bdg+2ahd+2bdg-2aeg \right){{x}^{2}} \\
& +\left( 2beg-2bdh+2beg-2aeg+2bdh-2aeg \right)x+\left( 2ceg-2cdh-2bfg+2afh-2ibd-2aei \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \Delta \left( x \right)=(0){{x}^{2}}-(0)x+0 \\
& \Rightarrow \Delta \left( x \right)=0 \\
\end{align}\]
Hence, we can say that the degree of the polynomial \[\Delta \left( x \right)\] is zero.
Hence, option C is correct.
Note: Some students may assume that the degree of the \[\Delta \left( x \right)\] is equal to 3 by simply seeing the equation below.
\[\Delta \left( x \right)=\left( \begin{matrix}
a{{x}^{2}}+bx+c & d{{x}^{2}}+ex+f & g{{x}^{2}}+hx+i \\
2ax+b & 2dx+e & 2gx+h \\
2a & 2d & 2g \\
\end{matrix} \right)\]
But after finding the determinant, we are getting the value of \[\Delta \left( x \right)\] is equal to constant.
So, students should solve the determinant until the last step. Then we will get the correct answer.
f(x) & g(x) & h(x) \\
{f}'(x) & {g}'(x) & {h}'(x) \\
{f}''(x) & {g}''(x) & {h}''(x) \\
\end{matrix} \right)\]. Now we will find the determinant of \[\Delta \left( x \right)\].
Complete step-by-step solution
Let us assume \[f(x)=a{{x}^{2}}+bx+c,g(x)=d{{x}^{2}}+ex+f,h(x)=g{{x}^{2}}+hx+i\].
Now let us consider
\[\begin{align}
& f(x)=a{{x}^{2}}+bx+c......(1) \\
& g(x)=d{{x}^{2}}+ex+f......(2) \\
& h(x)=g{{x}^{2}}+hx+i.......(3) \\
\end{align}\]
Now let us differentiate equation (1) on both sides, then we get
\[\begin{align}
& \Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}\left( a{{x}^{2}}+bx+c \right) \\
& \Rightarrow {f}'\left( x \right)=2ax+b.....(4) \\
\end{align}\]
Now let us differentiate equation (2) on both sides, then we get
\[\begin{align}
& \Rightarrow {g}'\left( x \right)=\dfrac{d}{dx}\left( d{{x}^{2}}+ex+f \right) \\
& \Rightarrow {g}'\left( x \right)=2dx+e.....(5) \\
\end{align}\]
Now let us differentiate equation (3) on both sides, then we get
\[\begin{align}
& \Rightarrow {h}'\left( x \right)=\dfrac{d}{dx}\left( g{{x}^{2}}+hx+i \right) \\
& \Rightarrow {h}'\left( x \right)=2gx+h....(6) \\
\end{align}\]
Now let us differentiate equation (4) on both sides, then we get
\[\begin{align}
& \Rightarrow {f}''\left( x \right)=\dfrac{d}{dx}\left( 2ax+b \right) \\
& \Rightarrow {f}''\left( x \right)=2a.....(7) \\
\end{align}\]
Now let us differentiate equation (5) on both sides, then we get
\[\begin{align}
& \Rightarrow {g}''\left( x \right)=\dfrac{d}{dx}\left( 2dx+e \right) \\
& \Rightarrow {g}''\left( x \right)=2d.....(8) \\
\end{align}\]
Now let us differentiate equation (6) on both sides, then we get
\[\begin{align}
& \Rightarrow {h}''\left( x \right)=\dfrac{d}{dx}\left( 2gx+h \right) \\
& \Rightarrow {h}''\left( x \right)=2g.....(9) \\
\end{align}\]
Now we have to calculate the value of \[\Delta \left( x \right)=\left( \begin{matrix}
f(x) & g(x) & h(x) \\
{f}'(x) & {g}'(x) & {h}'(x) \\
{f}''(x) & {g}''(x) & {h}''(x) \\
\end{matrix} \right)\].
We know that \[\left( \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right)=a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-eg \right)\]. By using this concept, we should find the value of \[\Delta \left( x \right)\].
So, from this concept we should find the value of
\[\Rightarrow \Delta \left( x \right)=\left( \begin{matrix}
a{{x}^{2}}+bx+c & d{{x}^{2}}+ex+f & g{{x}^{2}}+hx+i \\
2ax+b & 2dx+e & 2gx+h \\
2a & 2d & 2g \\
\end{matrix} \right)\]
\[\begin{align}
& \Rightarrow \Delta \left( x \right)=\left( a{{x}^{2}}+bx+c \right)\left( \left( 2dx+e \right)\left( 2g \right)-\left( 2gx+h \right)\left( 2d \right) \right)-\left( d{{x}^{2}}+ex+f \right)\left( \left( 2ax+b \right)\left( 2g \right)-\left( 2gx+h \right)\left( 2a \right) \right) \\
& \text{ }+\left( g{{x}^{2}}+hx+i \right)\left( \left( 2ax+b \right)\left( 2d \right)-\left( 2dx+e \right)\left( 2a \right) \right) \\
& \Rightarrow \Delta \left( x \right)=\left( a{{x}^{2}}+bx+c \right)\left( \left( 4dgx+2ge \right)-\left( 4dgx+2hd \right) \right)-\left( d{{x}^{2}}+ex+f \right)\left( \left( 4agx+2bg \right)-\left( 4agx+2ah \right) \right) \\
& \text{ }+\left( g{{x}^{2}}+hx+i \right)\left( \left( 4adx+2bd \right)-\left( 4adx+2ea \right) \right) \\
& \Rightarrow \Delta \left( x \right)=\left( a{{x}^{2}}+bx+c \right)\left( 2ge-2hd \right)-\left( d{{x}^{2}}+ex+f \right)\left( 2bg-2ah \right)+\left( g{{x}^{2}}+hx+i \right)\left( 2bd-2ea \right) \\
\end{align}\]
Now let us separate the coefficients of \[{{x}^{2}},x\]and constant. Now we will simply each and every term, then we get
\[\begin{align}
& \Rightarrow \Delta \left( x \right)=\left( 2aeg-2ahd-2bdg+2ahd+2bdg-2aeg \right){{x}^{2}} \\
& +\left( 2beg-2bdh+2beg-2aeg+2bdh-2aeg \right)x+\left( 2ceg-2cdh-2bfg+2afh-2ibd-2aei \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \Delta \left( x \right)=(0){{x}^{2}}-(0)x+0 \\
& \Rightarrow \Delta \left( x \right)=0 \\
\end{align}\]
Hence, we can say that the degree of the polynomial \[\Delta \left( x \right)\] is zero.
Hence, option C is correct.
Note: Some students may assume that the degree of the \[\Delta \left( x \right)\] is equal to 3 by simply seeing the equation below.
\[\Delta \left( x \right)=\left( \begin{matrix}
a{{x}^{2}}+bx+c & d{{x}^{2}}+ex+f & g{{x}^{2}}+hx+i \\
2ax+b & 2dx+e & 2gx+h \\
2a & 2d & 2g \\
\end{matrix} \right)\]
But after finding the determinant, we are getting the value of \[\Delta \left( x \right)\] is equal to constant.
So, students should solve the determinant until the last step. Then we will get the correct answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

