
If \[f(x) = \dfrac{{3x + 2}}{{5x - 3}}\], then which of the following option is true?
A) ${f^{ - 1}}(x) = f(x)$
B) ${f^{ - 1}}(x) = - f(x)$
C) ${f^{ - 1}}(x) = \dfrac{1}{{19}}f(x)$
D) $(f \circ f)(x) = - x$
Answer
555.3k+ views
Hint: From the options we can understand that we are asked to find the relation between the function $f(x)$ and its inverse ${f^{ - 1}}(x)$. To extract $x$ from the given expression, introduce another variable say $y$ dependent of $x$, such that, $f(x) = y$. This gives $x = {f^{ = 1}}(y)$ and so we can calculate ${f^{ - 1}}(x)$.
Formula Used:
For two variables $x,y$ and a function $f$,
$y = f(x) \Rightarrow {f^{ - 1}}(y) = {f^{ - 1}}f(x) = x$
Also, for any two constants $a,b$,
$f(ax + b) = af(x) + b$
Complete step by step answer:
Given, \[f(x) = \dfrac{{3x + 2}}{{5x - 3}}\]
We need to find the relation between $f(x)$ and its inverse ${f^{ - 1}}(x)$.
Let $f(x) = y$
\[ \Rightarrow \dfrac{{3x + 2}}{{5x - 3}} = y\]
Using this we can solve for $x$.
Cross multiplying the above equation we get,
$ \Rightarrow 3x + 2 = y(5x - 3)$
Simplifying we get,
$ \Rightarrow 3x + 2 = 5xy - 3y$
To find $x$, collect the terms with $x$ to one side of the equation.
$ \Rightarrow 3x - 5xy = - 3y - 2$
Taking $x$ common on the left side we get,
$ \Rightarrow x(3 - 5y) = - 3y - 2$
Simplifying we get,
$ \Rightarrow x = \dfrac{{ - 3y - 2}}{{3 - 5y}}$
Multiplying the numerator and denominator of the RHS by $ - 1$ we have,
$ \Rightarrow x = \dfrac{{3y + 2}}{{5y - 3}}$
To find ${f^{ - 1}}(x)$, using above equation we can take ${f^{ - 1}}$ on both sides,
$ \Rightarrow {f^{ - 1}}(x) = {f^{ - 1}}(\dfrac{{3y + 2}}{{5y - 3}})$
Also for any two constants $a,b$, we have the result,
$f(ax + b) = af(x) + b$
Using this we get,
$ \Rightarrow {f^{ - 1}}(x) = \dfrac{{3{f^{ - 1}}(y) + 2}}{{5{f^{ - 1}}(y) - 3}}$
We can observe that in the RHS, $y = f(x) \Rightarrow {f^{ - 1}}(y) = {f^{ - 1}}f(x) = x$
$ \Rightarrow {f^{ - 1}}(x) = \dfrac{{3x + 2}}{{5x - 3}}$
But we have ${f^{}}(x) = \dfrac{{3x + 2}}{{5x - 3}}$
So ${f^{ - 1}}(x) = f(x)$
$\therefore $ Option A is correct.
Note:
In this question, the inverse of the given function is the function itself. But in general it is not true. A function need not have inverse as well. For the existence of inverse, the function must be bijective that is, injective (one to one) as well as surjective (onto). Also the inverse may be negative of the function or a constant multiple like the other options.
Formula Used:
For two variables $x,y$ and a function $f$,
$y = f(x) \Rightarrow {f^{ - 1}}(y) = {f^{ - 1}}f(x) = x$
Also, for any two constants $a,b$,
$f(ax + b) = af(x) + b$
Complete step by step answer:
Given, \[f(x) = \dfrac{{3x + 2}}{{5x - 3}}\]
We need to find the relation between $f(x)$ and its inverse ${f^{ - 1}}(x)$.
Let $f(x) = y$
\[ \Rightarrow \dfrac{{3x + 2}}{{5x - 3}} = y\]
Using this we can solve for $x$.
Cross multiplying the above equation we get,
$ \Rightarrow 3x + 2 = y(5x - 3)$
Simplifying we get,
$ \Rightarrow 3x + 2 = 5xy - 3y$
To find $x$, collect the terms with $x$ to one side of the equation.
$ \Rightarrow 3x - 5xy = - 3y - 2$
Taking $x$ common on the left side we get,
$ \Rightarrow x(3 - 5y) = - 3y - 2$
Simplifying we get,
$ \Rightarrow x = \dfrac{{ - 3y - 2}}{{3 - 5y}}$
Multiplying the numerator and denominator of the RHS by $ - 1$ we have,
$ \Rightarrow x = \dfrac{{3y + 2}}{{5y - 3}}$
To find ${f^{ - 1}}(x)$, using above equation we can take ${f^{ - 1}}$ on both sides,
$ \Rightarrow {f^{ - 1}}(x) = {f^{ - 1}}(\dfrac{{3y + 2}}{{5y - 3}})$
Also for any two constants $a,b$, we have the result,
$f(ax + b) = af(x) + b$
Using this we get,
$ \Rightarrow {f^{ - 1}}(x) = \dfrac{{3{f^{ - 1}}(y) + 2}}{{5{f^{ - 1}}(y) - 3}}$
We can observe that in the RHS, $y = f(x) \Rightarrow {f^{ - 1}}(y) = {f^{ - 1}}f(x) = x$
$ \Rightarrow {f^{ - 1}}(x) = \dfrac{{3x + 2}}{{5x - 3}}$
But we have ${f^{}}(x) = \dfrac{{3x + 2}}{{5x - 3}}$
So ${f^{ - 1}}(x) = f(x)$
$\therefore $ Option A is correct.
Note:
In this question, the inverse of the given function is the function itself. But in general it is not true. A function need not have inverse as well. For the existence of inverse, the function must be bijective that is, injective (one to one) as well as surjective (onto). Also the inverse may be negative of the function or a constant multiple like the other options.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

