
If $f(x) = \dfrac{{1 - \sin 2\theta + \cos 2\theta }}{{2\cos 2\theta }},$ find the value of $8f({11^ \circ }) \times f({34^ \circ })$ is
Answer
615.9k+ views
Hint: In this question first we simplify the given function into the simplest form by using trigonometric formulas of ${\text{sin2}}\theta $,$\cos {\text{2}}\theta $ . Then find the values of $f({34^ \circ }){\text{ and f(1}}{{\text{1}}^ \circ })$in terms of simplest form and finally put in $8f({11^ \circ }) \times f({34^ \circ })$ to get answer.
Complete step-by-step answer:
We know
$
\Rightarrow {\text{sin2}}\theta = 2\sin \theta \cos \theta {\text{eq}}{\text{.1}} \\
\Rightarrow \cos {\text{2}}\theta = {\cos ^2}\theta - {\sin ^2}\theta {\text{eq}}{\text{.2}} \\
$
$
\Rightarrow f(x) = \dfrac{{1 - \sin 2\theta + \cos 2\theta }}{{2\cos 2\theta }} \\
\Rightarrow f(x) = \dfrac{{({{\cos }^2}\theta {\text{ + }}{{\sin }^2}\theta ) - 2\sin \theta \cos \theta + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}}{\text{ \{ }}{\cos ^2}\theta - {\sin ^2}\theta = 1\} \\
\Rightarrow f(x) = \dfrac{{({{\cos }^2}\theta {\text{ + }}{{\sin }^2}\theta - 2\sin \theta \cos \theta {\text{)}} + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}} \\
\Rightarrow f(x) = \dfrac{{{{(\cos \theta - \sin \theta {\text{)}}}^2} + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}} \\
$
$
\because {\cos ^2}\theta - {\sin ^2}\theta = (\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}} \\
$
$
\Rightarrow f(x) = \dfrac{{{{(\cos \theta - \sin \theta {\text{)}}}^2} + (\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}}}}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}}}} \\
$
On cancelling the common \[{\text{(}}\cos \theta - \sin \theta {\text{)}}\] from above expression, we get
$
\Rightarrow f(x) = \dfrac{{\cos \theta - \sin \theta + \cos \theta {\text{ + }}\sin \theta }}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)}}}} \\
\Rightarrow f(x) = \dfrac{{2\cos \theta }}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)}}}} \\
\Rightarrow f(x) = \dfrac{{\cos \theta }}{{\cos \theta {\text{ + }}\sin \theta }} \\
$
Now, on dividing numerator and denominator by $\cos \theta $, we get,
\[ \Rightarrow f(x) = \dfrac{1}{{{\text{1 + tan}}\theta }} \to (3) {\because \text{\{ tan}}\theta {\text{ = }}\dfrac{{{\text{sin}}\theta }}{{{\text{cos}}\theta }}\}\]
Now, we find \[f({11^ \circ }){\text{ and }}f({34^ \circ }){\text{ }}\]
$ \Rightarrow f({11^ \circ }) = \dfrac{1}{{1 + \tan ({{11}^ \circ })}}{\text{ eq}}{\text{.4}}$
And
$ \Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + \tan ({{34}^ \circ })}}$ eq.5
We can rewrite $\tan ({34^ \circ }) = \tan {(45 - 11)^ \circ }$ eq.6
Now using formula \[\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\],we can write above equation as
$
\Rightarrow \tan {(45 - 11)^ \circ } = \dfrac{{\tan {{45}^ \circ } - \tan {{11}^ \circ }}}{{1 + \tan {{45}^ \circ }.\tan {{11}^ \circ }}} \\
\Rightarrow \tan {(45 - 11)^ \circ } = \dfrac{{1 - \tan {{11}^ \circ }}}{{1 + \tan {{11}^ \circ }}}{\text{ \{ }}\tan {45^ \circ } = 1\} {\text{ eq}}{\text{.7}} \\
$
Now using eq.6 and eq.7 we can rewrite eq.5 as
$
\Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + \tan ({{34}^ \circ })}} \\
\Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + (\dfrac{{1 - \tan {{11}^ \circ }}}{{1 + \tan {{11}^ \circ }}})}} \\
\Rightarrow f({34^ \circ }) = \dfrac{{1 + \tan {{11}^ \circ }}}{2}{\text{ eq}}{\text{.8}} \\
$
Now ,put values $f({34^ \circ }){\text{ and f(1}}{{\text{1}}^ \circ })$ from eq.8 and eq.4 in
$
\Rightarrow 8f({11^ \circ }) \times f({34^ \circ }){\text{ = 8}} \times \dfrac{1}{{1 + \tan ({{11}^ \circ })}} \times \dfrac{{1 + \tan {{11}^ \circ }}}{2} \\
\Rightarrow 8f({11^ \circ }) \times f({34^ \circ }){\text{ = }}4 \\
$
Hence, the value of $8f({11^ \circ }) \times f({34^ \circ })$ is $4$.
Note: Whenever you get this type of problem the key concept of solving this is to check what trick or pattern is involved in it like in this question relation between \[{34^ \circ }{{\text{(45 - 11)}}^ \circ }{\text{ and 1}}{{\text{1}}^ \circ }\] . You have to learn as much as possible trigonometric formulas like in this we use trigonometric formulas of $\sin 2\theta ,\cos 2\theta ,$ $\tan (a - b)$.
Complete step-by-step answer:
We know
$
\Rightarrow {\text{sin2}}\theta = 2\sin \theta \cos \theta {\text{eq}}{\text{.1}} \\
\Rightarrow \cos {\text{2}}\theta = {\cos ^2}\theta - {\sin ^2}\theta {\text{eq}}{\text{.2}} \\
$
$
\Rightarrow f(x) = \dfrac{{1 - \sin 2\theta + \cos 2\theta }}{{2\cos 2\theta }} \\
\Rightarrow f(x) = \dfrac{{({{\cos }^2}\theta {\text{ + }}{{\sin }^2}\theta ) - 2\sin \theta \cos \theta + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}}{\text{ \{ }}{\cos ^2}\theta - {\sin ^2}\theta = 1\} \\
\Rightarrow f(x) = \dfrac{{({{\cos }^2}\theta {\text{ + }}{{\sin }^2}\theta - 2\sin \theta \cos \theta {\text{)}} + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}} \\
\Rightarrow f(x) = \dfrac{{{{(\cos \theta - \sin \theta {\text{)}}}^2} + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}} \\
$
$
\because {\cos ^2}\theta - {\sin ^2}\theta = (\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}} \\
$
$
\Rightarrow f(x) = \dfrac{{{{(\cos \theta - \sin \theta {\text{)}}}^2} + (\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}}}}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}}}} \\
$
On cancelling the common \[{\text{(}}\cos \theta - \sin \theta {\text{)}}\] from above expression, we get
$
\Rightarrow f(x) = \dfrac{{\cos \theta - \sin \theta + \cos \theta {\text{ + }}\sin \theta }}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)}}}} \\
\Rightarrow f(x) = \dfrac{{2\cos \theta }}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)}}}} \\
\Rightarrow f(x) = \dfrac{{\cos \theta }}{{\cos \theta {\text{ + }}\sin \theta }} \\
$
Now, on dividing numerator and denominator by $\cos \theta $, we get,
\[ \Rightarrow f(x) = \dfrac{1}{{{\text{1 + tan}}\theta }} \to (3) {\because \text{\{ tan}}\theta {\text{ = }}\dfrac{{{\text{sin}}\theta }}{{{\text{cos}}\theta }}\}\]
Now, we find \[f({11^ \circ }){\text{ and }}f({34^ \circ }){\text{ }}\]
$ \Rightarrow f({11^ \circ }) = \dfrac{1}{{1 + \tan ({{11}^ \circ })}}{\text{ eq}}{\text{.4}}$
And
$ \Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + \tan ({{34}^ \circ })}}$ eq.5
We can rewrite $\tan ({34^ \circ }) = \tan {(45 - 11)^ \circ }$ eq.6
Now using formula \[\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\],we can write above equation as
$
\Rightarrow \tan {(45 - 11)^ \circ } = \dfrac{{\tan {{45}^ \circ } - \tan {{11}^ \circ }}}{{1 + \tan {{45}^ \circ }.\tan {{11}^ \circ }}} \\
\Rightarrow \tan {(45 - 11)^ \circ } = \dfrac{{1 - \tan {{11}^ \circ }}}{{1 + \tan {{11}^ \circ }}}{\text{ \{ }}\tan {45^ \circ } = 1\} {\text{ eq}}{\text{.7}} \\
$
Now using eq.6 and eq.7 we can rewrite eq.5 as
$
\Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + \tan ({{34}^ \circ })}} \\
\Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + (\dfrac{{1 - \tan {{11}^ \circ }}}{{1 + \tan {{11}^ \circ }}})}} \\
\Rightarrow f({34^ \circ }) = \dfrac{{1 + \tan {{11}^ \circ }}}{2}{\text{ eq}}{\text{.8}} \\
$
Now ,put values $f({34^ \circ }){\text{ and f(1}}{{\text{1}}^ \circ })$ from eq.8 and eq.4 in
$
\Rightarrow 8f({11^ \circ }) \times f({34^ \circ }){\text{ = 8}} \times \dfrac{1}{{1 + \tan ({{11}^ \circ })}} \times \dfrac{{1 + \tan {{11}^ \circ }}}{2} \\
\Rightarrow 8f({11^ \circ }) \times f({34^ \circ }){\text{ = }}4 \\
$
Hence, the value of $8f({11^ \circ }) \times f({34^ \circ })$ is $4$.
Note: Whenever you get this type of problem the key concept of solving this is to check what trick or pattern is involved in it like in this question relation between \[{34^ \circ }{{\text{(45 - 11)}}^ \circ }{\text{ and 1}}{{\text{1}}^ \circ }\] . You have to learn as much as possible trigonometric formulas like in this we use trigonometric formulas of $\sin 2\theta ,\cos 2\theta ,$ $\tan (a - b)$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

