
If $f(x) = \dfrac{{1 - \sin 2\theta + \cos 2\theta }}{{2\cos 2\theta }},$ find the value of $8f({11^ \circ }) \times f({34^ \circ })$ is
Answer
518.4k+ views
Hint: In this question first we simplify the given function into the simplest form by using trigonometric formulas of ${\text{sin2}}\theta $,$\cos {\text{2}}\theta $ . Then find the values of $f({34^ \circ }){\text{ and f(1}}{{\text{1}}^ \circ })$in terms of simplest form and finally put in $8f({11^ \circ }) \times f({34^ \circ })$ to get answer.
Complete step-by-step answer:
We know
$
\Rightarrow {\text{sin2}}\theta = 2\sin \theta \cos \theta {\text{eq}}{\text{.1}} \\
\Rightarrow \cos {\text{2}}\theta = {\cos ^2}\theta - {\sin ^2}\theta {\text{eq}}{\text{.2}} \\
$
$
\Rightarrow f(x) = \dfrac{{1 - \sin 2\theta + \cos 2\theta }}{{2\cos 2\theta }} \\
\Rightarrow f(x) = \dfrac{{({{\cos }^2}\theta {\text{ + }}{{\sin }^2}\theta ) - 2\sin \theta \cos \theta + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}}{\text{ \{ }}{\cos ^2}\theta - {\sin ^2}\theta = 1\} \\
\Rightarrow f(x) = \dfrac{{({{\cos }^2}\theta {\text{ + }}{{\sin }^2}\theta - 2\sin \theta \cos \theta {\text{)}} + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}} \\
\Rightarrow f(x) = \dfrac{{{{(\cos \theta - \sin \theta {\text{)}}}^2} + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}} \\
$
$
\because {\cos ^2}\theta - {\sin ^2}\theta = (\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}} \\
$
$
\Rightarrow f(x) = \dfrac{{{{(\cos \theta - \sin \theta {\text{)}}}^2} + (\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}}}}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}}}} \\
$
On cancelling the common \[{\text{(}}\cos \theta - \sin \theta {\text{)}}\] from above expression, we get
$
\Rightarrow f(x) = \dfrac{{\cos \theta - \sin \theta + \cos \theta {\text{ + }}\sin \theta }}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)}}}} \\
\Rightarrow f(x) = \dfrac{{2\cos \theta }}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)}}}} \\
\Rightarrow f(x) = \dfrac{{\cos \theta }}{{\cos \theta {\text{ + }}\sin \theta }} \\
$
Now, on dividing numerator and denominator by $\cos \theta $, we get,
\[ \Rightarrow f(x) = \dfrac{1}{{{\text{1 + tan}}\theta }} \to (3) {\because \text{\{ tan}}\theta {\text{ = }}\dfrac{{{\text{sin}}\theta }}{{{\text{cos}}\theta }}\}\]
Now, we find \[f({11^ \circ }){\text{ and }}f({34^ \circ }){\text{ }}\]
$ \Rightarrow f({11^ \circ }) = \dfrac{1}{{1 + \tan ({{11}^ \circ })}}{\text{ eq}}{\text{.4}}$
And
$ \Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + \tan ({{34}^ \circ })}}$ eq.5
We can rewrite $\tan ({34^ \circ }) = \tan {(45 - 11)^ \circ }$ eq.6
Now using formula \[\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\],we can write above equation as
$
\Rightarrow \tan {(45 - 11)^ \circ } = \dfrac{{\tan {{45}^ \circ } - \tan {{11}^ \circ }}}{{1 + \tan {{45}^ \circ }.\tan {{11}^ \circ }}} \\
\Rightarrow \tan {(45 - 11)^ \circ } = \dfrac{{1 - \tan {{11}^ \circ }}}{{1 + \tan {{11}^ \circ }}}{\text{ \{ }}\tan {45^ \circ } = 1\} {\text{ eq}}{\text{.7}} \\
$
Now using eq.6 and eq.7 we can rewrite eq.5 as
$
\Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + \tan ({{34}^ \circ })}} \\
\Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + (\dfrac{{1 - \tan {{11}^ \circ }}}{{1 + \tan {{11}^ \circ }}})}} \\
\Rightarrow f({34^ \circ }) = \dfrac{{1 + \tan {{11}^ \circ }}}{2}{\text{ eq}}{\text{.8}} \\
$
Now ,put values $f({34^ \circ }){\text{ and f(1}}{{\text{1}}^ \circ })$ from eq.8 and eq.4 in
$
\Rightarrow 8f({11^ \circ }) \times f({34^ \circ }){\text{ = 8}} \times \dfrac{1}{{1 + \tan ({{11}^ \circ })}} \times \dfrac{{1 + \tan {{11}^ \circ }}}{2} \\
\Rightarrow 8f({11^ \circ }) \times f({34^ \circ }){\text{ = }}4 \\
$
Hence, the value of $8f({11^ \circ }) \times f({34^ \circ })$ is $4$.
Note: Whenever you get this type of problem the key concept of solving this is to check what trick or pattern is involved in it like in this question relation between \[{34^ \circ }{{\text{(45 - 11)}}^ \circ }{\text{ and 1}}{{\text{1}}^ \circ }\] . You have to learn as much as possible trigonometric formulas like in this we use trigonometric formulas of $\sin 2\theta ,\cos 2\theta ,$ $\tan (a - b)$.
Complete step-by-step answer:
We know
$
\Rightarrow {\text{sin2}}\theta = 2\sin \theta \cos \theta {\text{eq}}{\text{.1}} \\
\Rightarrow \cos {\text{2}}\theta = {\cos ^2}\theta - {\sin ^2}\theta {\text{eq}}{\text{.2}} \\
$
$
\Rightarrow f(x) = \dfrac{{1 - \sin 2\theta + \cos 2\theta }}{{2\cos 2\theta }} \\
\Rightarrow f(x) = \dfrac{{({{\cos }^2}\theta {\text{ + }}{{\sin }^2}\theta ) - 2\sin \theta \cos \theta + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}}{\text{ \{ }}{\cos ^2}\theta - {\sin ^2}\theta = 1\} \\
\Rightarrow f(x) = \dfrac{{({{\cos }^2}\theta {\text{ + }}{{\sin }^2}\theta - 2\sin \theta \cos \theta {\text{)}} + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}} \\
\Rightarrow f(x) = \dfrac{{{{(\cos \theta - \sin \theta {\text{)}}}^2} + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}} \\
$
$
\because {\cos ^2}\theta - {\sin ^2}\theta = (\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}} \\
$
$
\Rightarrow f(x) = \dfrac{{{{(\cos \theta - \sin \theta {\text{)}}}^2} + (\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}}}}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}}}} \\
$
On cancelling the common \[{\text{(}}\cos \theta - \sin \theta {\text{)}}\] from above expression, we get
$
\Rightarrow f(x) = \dfrac{{\cos \theta - \sin \theta + \cos \theta {\text{ + }}\sin \theta }}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)}}}} \\
\Rightarrow f(x) = \dfrac{{2\cos \theta }}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)}}}} \\
\Rightarrow f(x) = \dfrac{{\cos \theta }}{{\cos \theta {\text{ + }}\sin \theta }} \\
$
Now, on dividing numerator and denominator by $\cos \theta $, we get,
\[ \Rightarrow f(x) = \dfrac{1}{{{\text{1 + tan}}\theta }} \to (3) {\because \text{\{ tan}}\theta {\text{ = }}\dfrac{{{\text{sin}}\theta }}{{{\text{cos}}\theta }}\}\]
Now, we find \[f({11^ \circ }){\text{ and }}f({34^ \circ }){\text{ }}\]
$ \Rightarrow f({11^ \circ }) = \dfrac{1}{{1 + \tan ({{11}^ \circ })}}{\text{ eq}}{\text{.4}}$
And
$ \Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + \tan ({{34}^ \circ })}}$ eq.5
We can rewrite $\tan ({34^ \circ }) = \tan {(45 - 11)^ \circ }$ eq.6
Now using formula \[\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\],we can write above equation as
$
\Rightarrow \tan {(45 - 11)^ \circ } = \dfrac{{\tan {{45}^ \circ } - \tan {{11}^ \circ }}}{{1 + \tan {{45}^ \circ }.\tan {{11}^ \circ }}} \\
\Rightarrow \tan {(45 - 11)^ \circ } = \dfrac{{1 - \tan {{11}^ \circ }}}{{1 + \tan {{11}^ \circ }}}{\text{ \{ }}\tan {45^ \circ } = 1\} {\text{ eq}}{\text{.7}} \\
$
Now using eq.6 and eq.7 we can rewrite eq.5 as
$
\Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + \tan ({{34}^ \circ })}} \\
\Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + (\dfrac{{1 - \tan {{11}^ \circ }}}{{1 + \tan {{11}^ \circ }}})}} \\
\Rightarrow f({34^ \circ }) = \dfrac{{1 + \tan {{11}^ \circ }}}{2}{\text{ eq}}{\text{.8}} \\
$
Now ,put values $f({34^ \circ }){\text{ and f(1}}{{\text{1}}^ \circ })$ from eq.8 and eq.4 in
$
\Rightarrow 8f({11^ \circ }) \times f({34^ \circ }){\text{ = 8}} \times \dfrac{1}{{1 + \tan ({{11}^ \circ })}} \times \dfrac{{1 + \tan {{11}^ \circ }}}{2} \\
\Rightarrow 8f({11^ \circ }) \times f({34^ \circ }){\text{ = }}4 \\
$
Hence, the value of $8f({11^ \circ }) \times f({34^ \circ })$ is $4$.
Note: Whenever you get this type of problem the key concept of solving this is to check what trick or pattern is involved in it like in this question relation between \[{34^ \circ }{{\text{(45 - 11)}}^ \circ }{\text{ and 1}}{{\text{1}}^ \circ }\] . You have to learn as much as possible trigonometric formulas like in this we use trigonometric formulas of $\sin 2\theta ,\cos 2\theta ,$ $\tan (a - b)$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
