
If f(x) = $ {\cos ^{ - 1}}\left( {x - {x^2}} \right) + \sqrt {1 + \dfrac{1}{{\left| x \right|}}} + \dfrac{1}{{{x^2} - 1}} $ , then find the domain of f(x)
A. $ \left[ {\sqrt 2 ,\left( {\dfrac{{1 - \sqrt 5 }}{2}} \right)} \right] $
B. $ \left[ {\sqrt 2 ,\left( {\dfrac{{1 + \sqrt 5 }}{2}} \right)} \right] $
C. $ \left[ { - \sqrt 2 ,\left( {\dfrac{{1 \pm \sqrt 5 }}{2}} \right)} \right] $
D.None of these
Answer
493.2k+ views
Hint: First, we will divide this function in 3 parts and then will solve them separately and find their domain. Then, we will get 3 different domains. So, we will find the intersection of all the three domains. That value of intersection will be the final answer.
Complete step-by-step answer:
Divide this function in three parts.
$ f\left( x \right) = {f_1}\left( x \right) + {f_2}\left( x \right) + {f_3}\left( x \right) $
Now, we will find the domain of each part of the divided section.
First take $ {f_1}\left( x \right) $
$ {f_1}\left( x \right) = {\cos ^{ - 1}}\left( {x - {x^2}} \right) $
Domain of $ {\cos ^{ - 1}} $ is
$ - 1 \leqslant {\cos ^{ - 1}} \leqslant 1 $
From this, we can also get
$ - 1 \leqslant x - {x^2} $
$ {x^2} - x - 1 \leqslant 0 $
Now $ {x^2} - x - 1 $ is a quadratic equation. We will find its roots using the formula $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
In this quadratic equation value a is 1, b is -1 and c is also -1.
$ x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{2} $
$ x = \dfrac{{1 \pm \sqrt 5 }}{2} $
So, the domain of $ {f_1}\left( x \right) $ is
$ \dfrac{{1 - \sqrt 5 }}{2} \leqslant x \leqslant \dfrac{{1 + \sqrt 5 }}{2} $
Now, we will find the domain of $ {f_2}\left( x \right) $
$ {f_2}\left( x \right) = \sqrt {1 - \dfrac{1}{{\left| x \right|}}} $
Any term inside the root is equal to 0 or greater than 0. So,
$ 1 - \dfrac{1}{{\left| x \right|}} \geqslant 0 $
$ 1 \geqslant \dfrac{1}{{\left| x \right|}} $
$ \left| x \right| \geqslant 1 $
The domain of $ {f_2}\left( x \right) $ is $ \left[ {x \leqslant - 1,x \geqslant 1} \right] $
Now, we will find the domain of $ {f_3}\left( x \right) $
$ {f_3}\left( x \right) = \dfrac{1}{{{x^2} - 1}} $
X2 can not be equal to 1 as if it will be equal to 1, then the denominator will become 0. So,
The domain of $ {f_3}\left( x \right) $ is:
$ \left[ {{x^2} < 1,{x^2} \geqslant 2} \right] $
By combining all the three domains we get,
$ \left[ {\sqrt 2 ,\dfrac{{1 + \sqrt 5 }}{2}} \right] $
The final domain of the function is $ \left[ {\sqrt 2 ,\dfrac{{1 + \sqrt 5 }}{2}} \right] $ .
So, option (B) is the correct answer.
So, the correct answer is “Option B”.
Note: The domain of a function corresponds to the possible values of the independent variable which is x in this case. For this, the entire function is defined. The different values of x define the function.
Complete step-by-step answer:
Divide this function in three parts.
$ f\left( x \right) = {f_1}\left( x \right) + {f_2}\left( x \right) + {f_3}\left( x \right) $
Now, we will find the domain of each part of the divided section.
First take $ {f_1}\left( x \right) $
$ {f_1}\left( x \right) = {\cos ^{ - 1}}\left( {x - {x^2}} \right) $
Domain of $ {\cos ^{ - 1}} $ is
$ - 1 \leqslant {\cos ^{ - 1}} \leqslant 1 $
From this, we can also get
$ - 1 \leqslant x - {x^2} $
$ {x^2} - x - 1 \leqslant 0 $
Now $ {x^2} - x - 1 $ is a quadratic equation. We will find its roots using the formula $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
In this quadratic equation value a is 1, b is -1 and c is also -1.
$ x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{2} $
$ x = \dfrac{{1 \pm \sqrt 5 }}{2} $
So, the domain of $ {f_1}\left( x \right) $ is
$ \dfrac{{1 - \sqrt 5 }}{2} \leqslant x \leqslant \dfrac{{1 + \sqrt 5 }}{2} $
Now, we will find the domain of $ {f_2}\left( x \right) $
$ {f_2}\left( x \right) = \sqrt {1 - \dfrac{1}{{\left| x \right|}}} $
Any term inside the root is equal to 0 or greater than 0. So,
$ 1 - \dfrac{1}{{\left| x \right|}} \geqslant 0 $
$ 1 \geqslant \dfrac{1}{{\left| x \right|}} $
$ \left| x \right| \geqslant 1 $
The domain of $ {f_2}\left( x \right) $ is $ \left[ {x \leqslant - 1,x \geqslant 1} \right] $
Now, we will find the domain of $ {f_3}\left( x \right) $
$ {f_3}\left( x \right) = \dfrac{1}{{{x^2} - 1}} $
X2 can not be equal to 1 as if it will be equal to 1, then the denominator will become 0. So,
The domain of $ {f_3}\left( x \right) $ is:
$ \left[ {{x^2} < 1,{x^2} \geqslant 2} \right] $
By combining all the three domains we get,
$ \left[ {\sqrt 2 ,\dfrac{{1 + \sqrt 5 }}{2}} \right] $
The final domain of the function is $ \left[ {\sqrt 2 ,\dfrac{{1 + \sqrt 5 }}{2}} \right] $ .
So, option (B) is the correct answer.
So, the correct answer is “Option B”.
Note: The domain of a function corresponds to the possible values of the independent variable which is x in this case. For this, the entire function is defined. The different values of x define the function.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

