
If $\frac{{d(f(x))}}{{dx}} = \frac{1}{{1 + {x^2}}}$, then the \[\frac{{d(f({x^3}))}}{{dx}}\]is
Answer
511.8k+ views
Hint: The derivative of function f(x) is given. We can find the function f(x) by integrating both sides as follows:
$ \Rightarrow \int {\frac{{d(f(x))}}{{dx}}dx} = \int {\frac{1}{{1 + {x^2}}}dx} $, after integration the value of f(x) will be obtained the value of f(x).
To find the value of \[\frac{{d(f({x^3}))}}{{dx}}\], replace the x with ${x^3}$ and then take derivative of that function.
Complete step-by-step answer:
We are given with the derivation of a function i.e.
$ \Rightarrow $$\frac{{d(f(x))}}{{dx}} = \frac{1}{{1 + {x^2}}}$ …………… (1)
We have to find the value of \[\frac{{d(f({x^3}))}}{{dx}}\]as we don’t know the given function f(x).
First of all, we have to find the function f(x). Function f(x) can be obtained by integrating the equation (1) on both sides we get,
We will again apply formula on adjoint A i.e. adjoint of adjoint A is given by
$ \Rightarrow \int {\frac{{d(f(x))}}{{dx}}dx} = \int {\frac{1}{{1 + {x^2}}}dx} $
As $\frac{{d{{\tan }^{ - 1}}x}}{{dx}} = \frac{1}{{1 + {x^2}}}$and integration is opposite of differentiation, so
$ \Rightarrow \int {\frac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x + c$
$
\Rightarrow f(x) = \int {\frac{{d(f(x))}}{{dx}}dx} = \int {\frac{1}{{1 + {x^2}}}dx} \\
\Rightarrow f(x) = {\tan ^{ - 1}}x + c \\
\\
$ ……………………. (2)
Replace the x term in equation (2) with ${x^3}$, we get
$
\Rightarrow f(x) = {\tan ^{ - 1}}x + c \\
\Rightarrow f({x^3}) = {\tan ^{ - 1}}{x^3} + c \\
\\
$, where c is a constant ……………………. (3)
At last we will differentiate the equation (3) on both sides, we get
$
\Rightarrow \frac{{{d^{}}f({x^3})}}{{dx}} = \frac{{d({{\tan }^{ - 1}}{x^3} + c)}}{{dx}} \\
\Rightarrow \frac{{{d^{}}f({x^3})}}{{dx}} = \frac{{d{{\tan }^{ - 1}}{x^3}}}{{dx}} + \frac{{d(c)}}{{dx}} \\
\Rightarrow \frac{{{d^{}}f({x^3})}}{{dx}} = \frac{1}{{1 + {{({x^3})}^2}}}(\frac{{d{x^3}}}{{dx}}) \\
\Rightarrow \frac{{{d^{}}f({x^3})}}{{dx}} = \frac{1}{{1 + {{({x^3})}^2}}}(3{x^2}) \\
\Rightarrow \frac{{{d^{}}f({x^3})}}{{dx}} = \frac{{3{x^2}}}{{1 + {x^6}}} \\
$
The value of $\frac{{{d^{}}f({x^3})}}{{dx}} = \frac{{3{x^2}}}{{1 + {x^6}}}$
So, the required answer is $\frac{{3{x^2}}}{{1 + {x^6}}}$.
Note: While doing integration we also add constant in the answer why? Because as we do differentiation of a constant then it is zero. Hence while doing integration we also consider that value by adding a constant to it.
Another common mistake done by students can be from $\frac{{{d^{}}f({x^3})}}{{dx}} = \frac{{d{{\tan }^{ - 1}}{x^3}}}{{dx}} + \frac{{d(c)}}{{dx}}$. In this while integrating the tangent function, the differentiate of ${x^3}$multiplied by differentiation of tangent as it is also a function in tangent function. Generally, students forget to do that. i.e.
$ \Rightarrow \frac{{d(f(f(x)))}}{{dx}} = f'(f(x)) \times f'(x)$
$ \Rightarrow \int {\frac{{d(f(x))}}{{dx}}dx} = \int {\frac{1}{{1 + {x^2}}}dx} $, after integration the value of f(x) will be obtained the value of f(x).
To find the value of \[\frac{{d(f({x^3}))}}{{dx}}\], replace the x with ${x^3}$ and then take derivative of that function.
Complete step-by-step answer:
We are given with the derivation of a function i.e.
$ \Rightarrow $$\frac{{d(f(x))}}{{dx}} = \frac{1}{{1 + {x^2}}}$ …………… (1)
We have to find the value of \[\frac{{d(f({x^3}))}}{{dx}}\]as we don’t know the given function f(x).
First of all, we have to find the function f(x). Function f(x) can be obtained by integrating the equation (1) on both sides we get,
We will again apply formula on adjoint A i.e. adjoint of adjoint A is given by
$ \Rightarrow \int {\frac{{d(f(x))}}{{dx}}dx} = \int {\frac{1}{{1 + {x^2}}}dx} $
As $\frac{{d{{\tan }^{ - 1}}x}}{{dx}} = \frac{1}{{1 + {x^2}}}$and integration is opposite of differentiation, so
$ \Rightarrow \int {\frac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x + c$
$
\Rightarrow f(x) = \int {\frac{{d(f(x))}}{{dx}}dx} = \int {\frac{1}{{1 + {x^2}}}dx} \\
\Rightarrow f(x) = {\tan ^{ - 1}}x + c \\
\\
$ ……………………. (2)
Replace the x term in equation (2) with ${x^3}$, we get
$
\Rightarrow f(x) = {\tan ^{ - 1}}x + c \\
\Rightarrow f({x^3}) = {\tan ^{ - 1}}{x^3} + c \\
\\
$, where c is a constant ……………………. (3)
At last we will differentiate the equation (3) on both sides, we get
$
\Rightarrow \frac{{{d^{}}f({x^3})}}{{dx}} = \frac{{d({{\tan }^{ - 1}}{x^3} + c)}}{{dx}} \\
\Rightarrow \frac{{{d^{}}f({x^3})}}{{dx}} = \frac{{d{{\tan }^{ - 1}}{x^3}}}{{dx}} + \frac{{d(c)}}{{dx}} \\
\Rightarrow \frac{{{d^{}}f({x^3})}}{{dx}} = \frac{1}{{1 + {{({x^3})}^2}}}(\frac{{d{x^3}}}{{dx}}) \\
\Rightarrow \frac{{{d^{}}f({x^3})}}{{dx}} = \frac{1}{{1 + {{({x^3})}^2}}}(3{x^2}) \\
\Rightarrow \frac{{{d^{}}f({x^3})}}{{dx}} = \frac{{3{x^2}}}{{1 + {x^6}}} \\
$
The value of $\frac{{{d^{}}f({x^3})}}{{dx}} = \frac{{3{x^2}}}{{1 + {x^6}}}$
So, the required answer is $\frac{{3{x^2}}}{{1 + {x^6}}}$.
Note: While doing integration we also add constant in the answer why? Because as we do differentiation of a constant then it is zero. Hence while doing integration we also consider that value by adding a constant to it.
Another common mistake done by students can be from $\frac{{{d^{}}f({x^3})}}{{dx}} = \frac{{d{{\tan }^{ - 1}}{x^3}}}{{dx}} + \frac{{d(c)}}{{dx}}$. In this while integrating the tangent function, the differentiate of ${x^3}$multiplied by differentiation of tangent as it is also a function in tangent function. Generally, students forget to do that. i.e.
$ \Rightarrow \frac{{d(f(f(x)))}}{{dx}} = f'(f(x)) \times f'(x)$
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
