
If for $x\ne 0$, $af\left( x \right)+bf\left( \dfrac{1}{x} \right)=\dfrac{1}{x}-5$, where $a\ne b$, then \[\int\limits_{1}^{2}{xf\left( x \right)dx}\] is equal to
A. $\dfrac{b-9a}{9\left( {{a}^{2}}-{{b}^{2}} \right)}$
B. $\dfrac{b-9a}{b\left( {{a}^{2}}-{{b}^{2}} \right)}$
C. $\dfrac{b-9a}{6\left( {{a}^{2}}-{{b}^{2}} \right)}$
D. None of these
Answer
503.4k+ views
Hint: We first express the main function $f\left( x \right)$. We replace the value of $x$ with $\dfrac{1}{x}$ and place in the equation. From two equations we find the general form of the $f\left( x \right)$. We then complete the integration part to find the solution after multiplying with $x$.
Complete step-by-step answer:
We first use the given function of $af\left( x \right)+bf\left( \dfrac{1}{x} \right)=\dfrac{1}{x}-5$ to find the main function of $f\left( x \right)$.
We replace the value of $x$ with $\dfrac{1}{x}$ and place in the equation of $af\left( x \right)+bf\left( \dfrac{1}{x} \right)=\dfrac{1}{x}-5$.
So, $af\left( \dfrac{1}{x} \right)+bf\left( \dfrac{1}{{}^{1}/{}_{x}} \right)=\dfrac{1}{{}^{1}/{}_{x}}-5\Rightarrow af\left( \dfrac{1}{x} \right)+bf\left( x \right)=x-5$.
We find the value of $f\left( \dfrac{1}{x} \right)$ from the equation of $af\left( \dfrac{1}{x} \right)+bf\left( x \right)=x-5$.
$\begin{align}
& af\left( \dfrac{1}{x} \right)+bf\left( x \right)=x-5 \\
& \Rightarrow f\left( \dfrac{1}{x} \right)=\dfrac{x-5-bf\left( x \right)}{a} \\
\end{align}$
We replace the value in the equation of $af\left( x \right)+bf\left( \dfrac{1}{x} \right)=\dfrac{1}{x}-5$.
\[
af\left( x \right) + b \times \dfrac{{x - 5 - bf\left( x \right)}}{a} = \dfrac{1}{x} - 5 \\
\Rightarrow {a^2}f\left( x \right) + b\left[ {x - 5 - bf\left( x \right)} \right] = a\left( {\dfrac{1}{x} - 5} \right) \\
\Rightarrow {a^2}f\left( x \right) + b\left( {x - 5} \right) - {b^2}f\left( x \right) = a\left( {\dfrac{1}{x} - 5} \right) \\
\]
\[ \Rightarrow {a^2}f\left( x \right) - {b^2}f\left( x \right) = a\left( {\dfrac{1}{x} - 5} \right) - b\left( {x - 5} \right)\]
Now taking \[f(x)\] common we have,
\[ \Rightarrow f(x)\left[ {{a^2} - {b^2}} \right] = a\left( {\dfrac{1}{x} - 5} \right) - b\left( {x - 5} \right)\]
\[ \Rightarrow f\left( x \right)\left[ {{a^2} - {b^2}} \right] = a\left( {\dfrac{1}{x} - 5} \right) - b\left( {x - 5} \right)\]
Now dividing by \[{a^2} - {b^2}\] on both sides
\[ \Rightarrow f\left( x \right) = \dfrac{a}{{{a^2} - {b^2}}}\left( {\dfrac{1}{x} - 5} \right) - \dfrac{b}{{{a^2} - {b^2}}}\left( {x - 5} \right)\]
We found the main function of $f\left( x \right)$.
We multiply with $x$ to find the integral form for \[\int\limits_{1}^{2}{xf\left( x \right)dx}\].
\[\begin{align}
& xf\left( x \right) \\
& =x\left[ \dfrac{a}{{{a}^{2}}-{{b}^{2}}}\left( \dfrac{1}{x}-5 \right)-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\left( x-5 \right) \right] \\
& =\dfrac{a}{{{a}^{2}}-{{b}^{2}}}\left( 1-5x \right)-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\left( {{x}^{2}}-5x \right) \\
\end{align}\].
We now complete the integration. We have the formula of \[\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}\].
\[\int\limits_{1}^{2}{xf\left( x \right)dx}=\int\limits_{1}^{2}{\left[ \dfrac{a}{{{a}^{2}}-{{b}^{2}}}\left( 1-5x \right)-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\left( {{x}^{2}}-5x \right) \right]dx}\].
Breaking it into two parts we get
\[\begin{align}
& \int\limits_{1}^{2}{xf\left( x \right)dx} \\
& =\dfrac{a}{{{a}^{2}}-{{b}^{2}}}\int\limits_{1}^{2}{\left( 1-5x \right)dx}-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\int\limits_{1}^{2}{\left( {{x}^{2}}-5x \right)dx} \\
& =\left[ \dfrac{a}{{{a}^{2}}-{{b}^{2}}}\left( x-\dfrac{5{{x}^{2}}}{2} \right)-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\left( \dfrac{{{x}^{3}}}{3}-\dfrac{5{{x}^{2}}}{2} \right) \right]_{1}^{2} \\
\end{align}\]
We put the limit values to get
\[\begin{align}
& \left[ \dfrac{a}{{{a}^{2}}-{{b}^{2}}}\left( x-\dfrac{5{{x}^{2}}}{2} \right)-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\left( \dfrac{{{x}^{3}}}{3}-\dfrac{5{{x}^{2}}}{2} \right) \right]_{1}^{2} \\
& =\dfrac{a}{{{a}^{2}}-{{b}^{2}}}\left( 2-10+\dfrac{5}{2}-1 \right)-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\left( \dfrac{8}{3}-10+\dfrac{5}{2}-\dfrac{1}{3} \right) \\
& =\dfrac{-13a}{2\left( {{a}^{2}}-{{b}^{2}} \right)}-\dfrac{-31b}{6\left( {{a}^{2}}-{{b}^{2}} \right)} \\
& =\dfrac{31b-39a}{6\left( {{a}^{2}}-{{b}^{2}} \right)} \\
\end{align}\]
Therefore, the correct option is D.
So, the correct answer is “Option D”.
Note: The change of function can also be done for $f\left( \dfrac{1}{x} \right)$. But in that case, we need to find the change of the limit. if we get the function form of $f\left( \dfrac{1}{x} \right)$, then all the function would have to be written in $\dfrac{1}{x}$ form to get the general form.
Complete step-by-step answer:
We first use the given function of $af\left( x \right)+bf\left( \dfrac{1}{x} \right)=\dfrac{1}{x}-5$ to find the main function of $f\left( x \right)$.
We replace the value of $x$ with $\dfrac{1}{x}$ and place in the equation of $af\left( x \right)+bf\left( \dfrac{1}{x} \right)=\dfrac{1}{x}-5$.
So, $af\left( \dfrac{1}{x} \right)+bf\left( \dfrac{1}{{}^{1}/{}_{x}} \right)=\dfrac{1}{{}^{1}/{}_{x}}-5\Rightarrow af\left( \dfrac{1}{x} \right)+bf\left( x \right)=x-5$.
We find the value of $f\left( \dfrac{1}{x} \right)$ from the equation of $af\left( \dfrac{1}{x} \right)+bf\left( x \right)=x-5$.
$\begin{align}
& af\left( \dfrac{1}{x} \right)+bf\left( x \right)=x-5 \\
& \Rightarrow f\left( \dfrac{1}{x} \right)=\dfrac{x-5-bf\left( x \right)}{a} \\
\end{align}$
We replace the value in the equation of $af\left( x \right)+bf\left( \dfrac{1}{x} \right)=\dfrac{1}{x}-5$.
\[
af\left( x \right) + b \times \dfrac{{x - 5 - bf\left( x \right)}}{a} = \dfrac{1}{x} - 5 \\
\Rightarrow {a^2}f\left( x \right) + b\left[ {x - 5 - bf\left( x \right)} \right] = a\left( {\dfrac{1}{x} - 5} \right) \\
\Rightarrow {a^2}f\left( x \right) + b\left( {x - 5} \right) - {b^2}f\left( x \right) = a\left( {\dfrac{1}{x} - 5} \right) \\
\]
\[ \Rightarrow {a^2}f\left( x \right) - {b^2}f\left( x \right) = a\left( {\dfrac{1}{x} - 5} \right) - b\left( {x - 5} \right)\]
Now taking \[f(x)\] common we have,
\[ \Rightarrow f(x)\left[ {{a^2} - {b^2}} \right] = a\left( {\dfrac{1}{x} - 5} \right) - b\left( {x - 5} \right)\]
\[ \Rightarrow f\left( x \right)\left[ {{a^2} - {b^2}} \right] = a\left( {\dfrac{1}{x} - 5} \right) - b\left( {x - 5} \right)\]
Now dividing by \[{a^2} - {b^2}\] on both sides
\[ \Rightarrow f\left( x \right) = \dfrac{a}{{{a^2} - {b^2}}}\left( {\dfrac{1}{x} - 5} \right) - \dfrac{b}{{{a^2} - {b^2}}}\left( {x - 5} \right)\]
We found the main function of $f\left( x \right)$.
We multiply with $x$ to find the integral form for \[\int\limits_{1}^{2}{xf\left( x \right)dx}\].
\[\begin{align}
& xf\left( x \right) \\
& =x\left[ \dfrac{a}{{{a}^{2}}-{{b}^{2}}}\left( \dfrac{1}{x}-5 \right)-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\left( x-5 \right) \right] \\
& =\dfrac{a}{{{a}^{2}}-{{b}^{2}}}\left( 1-5x \right)-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\left( {{x}^{2}}-5x \right) \\
\end{align}\].
We now complete the integration. We have the formula of \[\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}\].
\[\int\limits_{1}^{2}{xf\left( x \right)dx}=\int\limits_{1}^{2}{\left[ \dfrac{a}{{{a}^{2}}-{{b}^{2}}}\left( 1-5x \right)-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\left( {{x}^{2}}-5x \right) \right]dx}\].
Breaking it into two parts we get
\[\begin{align}
& \int\limits_{1}^{2}{xf\left( x \right)dx} \\
& =\dfrac{a}{{{a}^{2}}-{{b}^{2}}}\int\limits_{1}^{2}{\left( 1-5x \right)dx}-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\int\limits_{1}^{2}{\left( {{x}^{2}}-5x \right)dx} \\
& =\left[ \dfrac{a}{{{a}^{2}}-{{b}^{2}}}\left( x-\dfrac{5{{x}^{2}}}{2} \right)-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\left( \dfrac{{{x}^{3}}}{3}-\dfrac{5{{x}^{2}}}{2} \right) \right]_{1}^{2} \\
\end{align}\]
We put the limit values to get
\[\begin{align}
& \left[ \dfrac{a}{{{a}^{2}}-{{b}^{2}}}\left( x-\dfrac{5{{x}^{2}}}{2} \right)-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\left( \dfrac{{{x}^{3}}}{3}-\dfrac{5{{x}^{2}}}{2} \right) \right]_{1}^{2} \\
& =\dfrac{a}{{{a}^{2}}-{{b}^{2}}}\left( 2-10+\dfrac{5}{2}-1 \right)-\dfrac{b}{{{a}^{2}}-{{b}^{2}}}\left( \dfrac{8}{3}-10+\dfrac{5}{2}-\dfrac{1}{3} \right) \\
& =\dfrac{-13a}{2\left( {{a}^{2}}-{{b}^{2}} \right)}-\dfrac{-31b}{6\left( {{a}^{2}}-{{b}^{2}} \right)} \\
& =\dfrac{31b-39a}{6\left( {{a}^{2}}-{{b}^{2}} \right)} \\
\end{align}\]
Therefore, the correct option is D.
So, the correct answer is “Option D”.
Note: The change of function can also be done for $f\left( \dfrac{1}{x} \right)$. But in that case, we need to find the change of the limit. if we get the function form of $f\left( \dfrac{1}{x} \right)$, then all the function would have to be written in $\dfrac{1}{x}$ form to get the general form.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

