
If $$f\left( x\right) =16^{x}+\log_{4} x$$, find $$f\left( \dfrac{1}{2} \right) ,f\left( \dfrac{1}{4} \right) $$
Answer
599.1k+ views
Hint: In this question it is given that $$f\left( x\right) =16^{x}+\log_{4} x$$, so we have to find the value of $$f\left( \dfrac{1}{2} \right) ,f\left( \dfrac{1}{4} \right) $$. Since the given function is the function of x, so to find the solution we have to put $$x=\dfrac{1}{2} ,\ x=\dfrac{1}{4}$$ in the given function.
Complete step-by-step answer:
Given function,
$$f\left( x\right) =16^{x}+\log_{4} x$$...............(1)
So in order to find $$f\left( \dfrac{1}{2} \right)$$ we have to put $$x=\dfrac{1}{2} $$ in the above function,
So when $$x=\dfrac{1}{2} $$,
$$f\left( \dfrac{1}{2} \right) =\left( 16\right)^{\dfrac{1}{2} } +\log_{4} \left( \dfrac{1}{2} \right) $$
$$=\left( 2^{4}\right)^{\dfrac{1}{2} } +\log_{4} 2^{-1}$$ [$$\because \dfrac{1}{a} =a^{-1}$$]
Now as we know that $$\left( a^{m}\right)^{n} =a^{m\times n}$$ and $$\log_{k} a^{b}=a\log_{k} b$$,
So by using these formula we can write the above equation as,
$$f\left( \dfrac{1}{2} \right) =2^{\left( 4\times \dfrac{1}{2} \right) }+\left( -1\right) \log_{4} 2$$
$$=2^{2}-\log_{4} 2$$
$$=2^{2}-\dfrac{1}{2} \times 2\log_{4} 2$$ [multiply and divide 2 in the second term]
$$=4-\dfrac{1}{2} \log_{4} 2^{2}$$ [since, $$a\log_{k} b=\log_{k} a^{b}$$]
$$=4-\dfrac{1}{2} \log_{4} 4$$
Now as we know that $$\log_{a} a=1$$, so therefore we can write,
$$f\left( x\right) =4-\dfrac{1}{2} \times 1$$
$$=4-\dfrac{1}{2}$$
$$=\dfrac{4\times 2-1}{2}$$
$$=\dfrac{7}{2}$$
Therefore, $$f\left( \dfrac{1}{2} \right) =\dfrac{7}{2}$$
Now when $$x=\dfrac{1}{4}$$
$$f\left( \dfrac{1}{4} \right) =\left( 16\right)^{\dfrac{1}{4} } +\log_{4} \left( \dfrac{1}{4} \right) $$
$$=\left( 2^{4}\right)^{\dfrac{1}{4} } +\log_{4} 4^{-1}$$
$$=2^{\left( 4\times \dfrac{1}{4} \right) }+\log_{4} 4^{-1}$$ [since, $$\left( a^{m}\right)^{n} =a^{m\times n}$$]
$$=2^{1}+\left( -1\right) \log_{4} 4$$ [since, $$\log_{k} a^{b}=a\log_{k} b$$]
$$=2-1$$ [since, $$\log_{a} a=1$$]
$$= 1$$
Therefore $$f\left( \dfrac{1}{4} \right) =1$$.
Note: While solving this type of question you need to know that if you plot this given function on graph paper then it will give us a curve where x is the independent variable and f(x) is dependent variable and when you put any value of x in that function then this will give you one output i.e, y coordinate. For example- in the given question we have put $$x=\dfrac{1}{4}$$ which give us y=f(x)=1, therefore $$\left( \dfrac{1}{4} ,1\right) $$ is the coordinate of a particular point on the given curve $$f\left( x\right) =16^{x}+\log_{4} x$$.
Complete step-by-step answer:
Given function,
$$f\left( x\right) =16^{x}+\log_{4} x$$...............(1)
So in order to find $$f\left( \dfrac{1}{2} \right)$$ we have to put $$x=\dfrac{1}{2} $$ in the above function,
So when $$x=\dfrac{1}{2} $$,
$$f\left( \dfrac{1}{2} \right) =\left( 16\right)^{\dfrac{1}{2} } +\log_{4} \left( \dfrac{1}{2} \right) $$
$$=\left( 2^{4}\right)^{\dfrac{1}{2} } +\log_{4} 2^{-1}$$ [$$\because \dfrac{1}{a} =a^{-1}$$]
Now as we know that $$\left( a^{m}\right)^{n} =a^{m\times n}$$ and $$\log_{k} a^{b}=a\log_{k} b$$,
So by using these formula we can write the above equation as,
$$f\left( \dfrac{1}{2} \right) =2^{\left( 4\times \dfrac{1}{2} \right) }+\left( -1\right) \log_{4} 2$$
$$=2^{2}-\log_{4} 2$$
$$=2^{2}-\dfrac{1}{2} \times 2\log_{4} 2$$ [multiply and divide 2 in the second term]
$$=4-\dfrac{1}{2} \log_{4} 2^{2}$$ [since, $$a\log_{k} b=\log_{k} a^{b}$$]
$$=4-\dfrac{1}{2} \log_{4} 4$$
Now as we know that $$\log_{a} a=1$$, so therefore we can write,
$$f\left( x\right) =4-\dfrac{1}{2} \times 1$$
$$=4-\dfrac{1}{2}$$
$$=\dfrac{4\times 2-1}{2}$$
$$=\dfrac{7}{2}$$
Therefore, $$f\left( \dfrac{1}{2} \right) =\dfrac{7}{2}$$
Now when $$x=\dfrac{1}{4}$$
$$f\left( \dfrac{1}{4} \right) =\left( 16\right)^{\dfrac{1}{4} } +\log_{4} \left( \dfrac{1}{4} \right) $$
$$=\left( 2^{4}\right)^{\dfrac{1}{4} } +\log_{4} 4^{-1}$$
$$=2^{\left( 4\times \dfrac{1}{4} \right) }+\log_{4} 4^{-1}$$ [since, $$\left( a^{m}\right)^{n} =a^{m\times n}$$]
$$=2^{1}+\left( -1\right) \log_{4} 4$$ [since, $$\log_{k} a^{b}=a\log_{k} b$$]
$$=2-1$$ [since, $$\log_{a} a=1$$]
$$= 1$$
Therefore $$f\left( \dfrac{1}{4} \right) =1$$.
Note: While solving this type of question you need to know that if you plot this given function on graph paper then it will give us a curve where x is the independent variable and f(x) is dependent variable and when you put any value of x in that function then this will give you one output i.e, y coordinate. For example- in the given question we have put $$x=\dfrac{1}{4}$$ which give us y=f(x)=1, therefore $$\left( \dfrac{1}{4} ,1\right) $$ is the coordinate of a particular point on the given curve $$f\left( x\right) =16^{x}+\log_{4} x$$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

