
If \[f\left( x \right)=\left\{ \begin{align}
& \dfrac{{{\left( \exp \left\{ \left( x+3 \right)\ln 27 \right\} \right)}^{\dfrac{1}{27}\left[ x+1 \right]}}-9}{{{3}^{x}}-27}\text{ ; }x<3 \\
& \lambda .\dfrac{1-\cos \left( x-3 \right)}{\left( x-3 \right)\tan \left( x-3 \right)}\text{ ; }x>3 \\
\end{align} \right.\] is continuous at \[x=3\], then the value of \[8100\lambda \] must be?
Answer
523.2k+ views
Hint: In order to find the solution of the given question, that is to determine the value of \[8100\lambda \] if \[f\left( x \right)=\left\{ \begin{align}
& \dfrac{{{\left( \exp \left\{ \left( x+3 \right)\ln 27 \right\} \right)}^{\dfrac{1}{27}\left[ x+1 \right]}}-9}{{{3}^{x}}-27}\text{ ; }x<3 \\
& \lambda .\dfrac{1-\cos \left( x-3 \right)}{\left( x-3 \right)\tan \left( x-3 \right)}\text{ ; }x>3 \\
\end{align} \right.\] is continuous at \[x=3\]. Apply the one of the results of continuous function that is “if a function \[f\left( x \right)\] is continuous at \[x=a\] then \[\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)\] “to find the value of \[\lambda \].
Complete step by step answer:
According to the question, given function in question is as follows:
\[f\left( x \right)=\left\{ \begin{align}
& \dfrac{{{\left( \exp \left\{ \left( x+3 \right)\ln 27 \right\} \right)}^{\dfrac{1}{27}\left[ x+1 \right]}}-9}{{{3}^{x}}-27}\text{ ; }x<3 \\
& \lambda .\dfrac{1-\cos \left( x-3 \right)}{\left( x-3 \right)\tan \left( x-3 \right)}\text{ ; }x>3 \\
\end{align} \right.\]
We know that this function is continuous at \[x=3\]. Therefore, according to the definition of continuous function that is if a function \[f\left( x \right)\] is continuous at \[x=a\] then \[\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)\] .
This implies that as per the given in the question, \[f\left( x \right)\] is continuous at \[x=3\] then \[\displaystyle \lim_{x \to {{3}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{3}^{+}}}f\left( x \right)\]
Now, let’s first find the limit of the left-hand side of the function.
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{\left( \exp \left\{ \left( x+3 \right)\ln 27 \right\} \right)}^{\dfrac{1}{27}\left( x+1 \right)}}-9}{{{3}^{x}}-27}\]
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{\left( {{e}^{\left( \left( x+3 \right)\ln 27 \right)}} \right)}^{\dfrac{1}{27}\left( x+1 \right)}}-9}{{{3}^{x}}-27}\]
Apply the property of logarithm that is \[\left( a \right)\ln \left( b \right)=\ln {{\left( b \right)}^{a}}\] in the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{\left( {{e}^{\left( \ln {{27}^{\left( x+3 \right)}} \right)}} \right)}^{\dfrac{1}{27}\left( x+1 \right)}}-9}{{{3}^{x}}-27}\]
We know that \[{{e}^{\ln a}}=a\], therefore we can rewrite above expression as follows:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{\left( {{27}^{\left( x+3 \right)}} \right)}^{\dfrac{1}{27}\left( x+1 \right)}}-9}{{{3}^{x}}-27}\]
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{\left( 27 \right)}^{\dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)}}-9}{{{3}^{x}}-27}\]
Now take the term \[9\] common from the numerator of the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{9.\left( {{27}^{\dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3}}}-1 \right)}{27\left( \dfrac{{{3}^{x}}}{27}-1 \right)}\]
Now take the term \[27\] common from the denominator of the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{9.\left( {{27}^{\dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3}}}-1 \right)}{27\left( {{3}^{x-3}}-1 \right)}\]
After this multiply and divide term \[\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)\] in the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( {{27}^{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}}-1 \right)}{3\left( {{3}^{x-3}}-1 \right)}\times \dfrac{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}\]
Apply the result that \[\displaystyle \lim_{x \to b}\dfrac{{{a}^{x}}-1}{x}=1\], therefore we can say that \[\displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( {{27}^{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}}-1 \right)}{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}=1\], hence, we can write above expression as:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}{3\left( {{3}^{x-3}}-1 \right)}\]
After this multiply and divide term \[\left( x-3 \right)\] in the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}{3\left( {{3}^{\left( x-3 \right)}}-1 \right)\times \dfrac{\left( x-3 \right)}{\left( x-3 \right)}}\]
Apply the result that \[\displaystyle \lim_{x \to b}\dfrac{{{a}^{x}}-1}{x}=1\], therefore we can say that \[\displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( {{3}^{\left( x-3 \right)}}-1 \right)}{\left( x-3 \right)}=1\], hence, we can write above expression as:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}{3\left( x-3 \right)}\]
Now, take the LCM of the terms in the numerator, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( \dfrac{\left( x+3 \right)\left( x+1 \right)-18}{27} \right)}{3\left( x-3 \right)}\]
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( x+3 \right)\left( x+1 \right)-18}{3\times 27\times \left( x-3 \right)}\]
After simplifying this further we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{x}^{2}}+x+3x+3-18}{3\times 27\times \left( x-3 \right)}\]
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{x}^{2}}+4x-15}{81\left( x-3 \right)}\]
Now, apply the left-hand side limit that is putting \[x=3-h\] in the above expression, we get:
\[\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{{{\left( 3-h \right)}^{2}}+4\left( 3-h \right)-15}{81\left( 3-h-3 \right)}\]
\[\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{{{\left( 3-h \right)}^{2}}+4\left( 3-h \right)-15}{81\left( -h \right)}\]
\[\Rightarrow \dfrac{{{\left( 3-0 \right)}^{2}}+4\left( 3-0 \right)-15}{81\left( -0 \right)}\]
\[\Rightarrow -\infty \]
Therefore, left-hand side limit of the function is equal to \[-\infty \]which means that\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{\left( \exp \left\{ \left( x+3 \right)\ln 27 \right\} \right)}^{\dfrac{1}{27}\left( x+1 \right)}}-9}{{{3}^{x}}-27}=-\infty \]
Now find the right-hand side limit of the function.
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{3}^{+}}}\lambda .\dfrac{1-\cos \left( x-3 \right)}{\left( x-3 \right)\tan \left( x-3 \right)}\]
Apply the identity that is \[1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}\]in the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{+}}}\lambda .\dfrac{2{{\sin }^{2}}\dfrac{\left( x-3 \right)}{2}}{\left( x-3 \right)\tan \left( x-3 \right)}\]
Now multiply and divide \[\dfrac{\left( x-3 \right)}{4}\]in the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{+}}}\lambda .\dfrac{\dfrac{\left( x-3 \right)}{4}}{\dfrac{\left( x-3 \right)}{4}}\dfrac{2{{\sin }^{2}}\dfrac{\left( x-3 \right)}{2}}{\left( x-3 \right)\tan \left( x-3 \right)}\]
\[\Rightarrow \displaystyle \lim_{x \to +3}\lambda .\dfrac{\left( x-3 \right)}{4}.\dfrac{2{{\sin }^{2}}\dfrac{\left( x-3 \right)}{2}}{\dfrac{{{\left( x-3 \right)}^{2}}}{4}\tan \left( x-3 \right)}\]
Apply the result that \[\displaystyle \lim_{x \to b}\dfrac{{{\sin }^{2}}x}{{{x}^{2}}}=1\], therefore we can say that \[\displaystyle \lim_{x \to {{3}^{+}}}\dfrac{{{\sin }^{2}}\dfrac{\left( x-3 \right)}{2}}{\dfrac{{{\left( x-3 \right)}^{2}}}{4}}=1\], hence, we can write above expression as:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{+}}}\dfrac{\left( x-3 \right)}{4}.\dfrac{2\lambda }{\tan \left( x-3 \right)}\]
We know that \[\displaystyle \lim_{x \to {{3}^{+}}}\dfrac{\tan \left( x-3 \right)}{\left( x-3 \right)}=1\], therefore we can write above expression as:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{+}}}\dfrac{2\lambda }{4}\]
\[\Rightarrow \dfrac{\lambda }{2}\]
Therefore, right-hand side limit of the function is equal to \[\dfrac{\lambda }{2}\]which means that
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{3}^{+}}}\lambda .\dfrac{1-\cos \left( x-3 \right)}{\left( x-3 \right)\tan \left( x-3 \right)}=\dfrac{\lambda }{2}\]
We know that \[\displaystyle \lim_{x \to {{3}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{3}^{+}}}f\left( x \right)\], therefore we can write:
\[\Rightarrow -\infty =\dfrac{\lambda }{2}\]
\[\Rightarrow \lambda =-\infty \]
As we know the value of \[\lambda \], we can now find the value of \[8100\lambda \], we get:
\[\Rightarrow 8100\lambda =8100\left( -\infty \right)\]
\[\Rightarrow 8100\lambda =-\infty \]
Therefore, the value of \[8100\lambda \] is equal to \[-\infty \].
Note: Students can make calculation mistakes, while solving this type of question. It’s better to recheck the answer after solving it. Also remember the key points, that are \[\displaystyle \lim_{x \to b}\dfrac{{{a}^{x}}-1}{x}=1\], \[\left( a \right)\ln \left( b \right)=\ln {{\left( b \right)}^{a}}\], \[{{e}^{\ln a}}=a\] and \[1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}\].
& \dfrac{{{\left( \exp \left\{ \left( x+3 \right)\ln 27 \right\} \right)}^{\dfrac{1}{27}\left[ x+1 \right]}}-9}{{{3}^{x}}-27}\text{ ; }x<3 \\
& \lambda .\dfrac{1-\cos \left( x-3 \right)}{\left( x-3 \right)\tan \left( x-3 \right)}\text{ ; }x>3 \\
\end{align} \right.\] is continuous at \[x=3\]. Apply the one of the results of continuous function that is “if a function \[f\left( x \right)\] is continuous at \[x=a\] then \[\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)\] “to find the value of \[\lambda \].
Complete step by step answer:
According to the question, given function in question is as follows:
\[f\left( x \right)=\left\{ \begin{align}
& \dfrac{{{\left( \exp \left\{ \left( x+3 \right)\ln 27 \right\} \right)}^{\dfrac{1}{27}\left[ x+1 \right]}}-9}{{{3}^{x}}-27}\text{ ; }x<3 \\
& \lambda .\dfrac{1-\cos \left( x-3 \right)}{\left( x-3 \right)\tan \left( x-3 \right)}\text{ ; }x>3 \\
\end{align} \right.\]
We know that this function is continuous at \[x=3\]. Therefore, according to the definition of continuous function that is if a function \[f\left( x \right)\] is continuous at \[x=a\] then \[\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)\] .
This implies that as per the given in the question, \[f\left( x \right)\] is continuous at \[x=3\] then \[\displaystyle \lim_{x \to {{3}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{3}^{+}}}f\left( x \right)\]
Now, let’s first find the limit of the left-hand side of the function.
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{\left( \exp \left\{ \left( x+3 \right)\ln 27 \right\} \right)}^{\dfrac{1}{27}\left( x+1 \right)}}-9}{{{3}^{x}}-27}\]
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{\left( {{e}^{\left( \left( x+3 \right)\ln 27 \right)}} \right)}^{\dfrac{1}{27}\left( x+1 \right)}}-9}{{{3}^{x}}-27}\]
Apply the property of logarithm that is \[\left( a \right)\ln \left( b \right)=\ln {{\left( b \right)}^{a}}\] in the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{\left( {{e}^{\left( \ln {{27}^{\left( x+3 \right)}} \right)}} \right)}^{\dfrac{1}{27}\left( x+1 \right)}}-9}{{{3}^{x}}-27}\]
We know that \[{{e}^{\ln a}}=a\], therefore we can rewrite above expression as follows:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{\left( {{27}^{\left( x+3 \right)}} \right)}^{\dfrac{1}{27}\left( x+1 \right)}}-9}{{{3}^{x}}-27}\]
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{\left( 27 \right)}^{\dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)}}-9}{{{3}^{x}}-27}\]
Now take the term \[9\] common from the numerator of the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{9.\left( {{27}^{\dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3}}}-1 \right)}{27\left( \dfrac{{{3}^{x}}}{27}-1 \right)}\]
Now take the term \[27\] common from the denominator of the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{9.\left( {{27}^{\dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3}}}-1 \right)}{27\left( {{3}^{x-3}}-1 \right)}\]
After this multiply and divide term \[\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)\] in the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( {{27}^{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}}-1 \right)}{3\left( {{3}^{x-3}}-1 \right)}\times \dfrac{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}\]
Apply the result that \[\displaystyle \lim_{x \to b}\dfrac{{{a}^{x}}-1}{x}=1\], therefore we can say that \[\displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( {{27}^{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}}-1 \right)}{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}=1\], hence, we can write above expression as:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}{3\left( {{3}^{x-3}}-1 \right)}\]
After this multiply and divide term \[\left( x-3 \right)\] in the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}{3\left( {{3}^{\left( x-3 \right)}}-1 \right)\times \dfrac{\left( x-3 \right)}{\left( x-3 \right)}}\]
Apply the result that \[\displaystyle \lim_{x \to b}\dfrac{{{a}^{x}}-1}{x}=1\], therefore we can say that \[\displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( {{3}^{\left( x-3 \right)}}-1 \right)}{\left( x-3 \right)}=1\], hence, we can write above expression as:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( \dfrac{1}{27}\left( x+3 \right)\left( x+1 \right)-\dfrac{2}{3} \right)}{3\left( x-3 \right)}\]
Now, take the LCM of the terms in the numerator, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( \dfrac{\left( x+3 \right)\left( x+1 \right)-18}{27} \right)}{3\left( x-3 \right)}\]
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{\left( x+3 \right)\left( x+1 \right)-18}{3\times 27\times \left( x-3 \right)}\]
After simplifying this further we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{x}^{2}}+x+3x+3-18}{3\times 27\times \left( x-3 \right)}\]
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{x}^{2}}+4x-15}{81\left( x-3 \right)}\]
Now, apply the left-hand side limit that is putting \[x=3-h\] in the above expression, we get:
\[\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{{{\left( 3-h \right)}^{2}}+4\left( 3-h \right)-15}{81\left( 3-h-3 \right)}\]
\[\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{{{\left( 3-h \right)}^{2}}+4\left( 3-h \right)-15}{81\left( -h \right)}\]
\[\Rightarrow \dfrac{{{\left( 3-0 \right)}^{2}}+4\left( 3-0 \right)-15}{81\left( -0 \right)}\]
\[\Rightarrow -\infty \]
Therefore, left-hand side limit of the function is equal to \[-\infty \]which means that\[\Rightarrow \displaystyle \lim_{x \to {{3}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{3}^{-}}}\dfrac{{{\left( \exp \left\{ \left( x+3 \right)\ln 27 \right\} \right)}^{\dfrac{1}{27}\left( x+1 \right)}}-9}{{{3}^{x}}-27}=-\infty \]
Now find the right-hand side limit of the function.
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{3}^{+}}}\lambda .\dfrac{1-\cos \left( x-3 \right)}{\left( x-3 \right)\tan \left( x-3 \right)}\]
Apply the identity that is \[1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}\]in the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{+}}}\lambda .\dfrac{2{{\sin }^{2}}\dfrac{\left( x-3 \right)}{2}}{\left( x-3 \right)\tan \left( x-3 \right)}\]
Now multiply and divide \[\dfrac{\left( x-3 \right)}{4}\]in the above expression, we get:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{+}}}\lambda .\dfrac{\dfrac{\left( x-3 \right)}{4}}{\dfrac{\left( x-3 \right)}{4}}\dfrac{2{{\sin }^{2}}\dfrac{\left( x-3 \right)}{2}}{\left( x-3 \right)\tan \left( x-3 \right)}\]
\[\Rightarrow \displaystyle \lim_{x \to +3}\lambda .\dfrac{\left( x-3 \right)}{4}.\dfrac{2{{\sin }^{2}}\dfrac{\left( x-3 \right)}{2}}{\dfrac{{{\left( x-3 \right)}^{2}}}{4}\tan \left( x-3 \right)}\]
Apply the result that \[\displaystyle \lim_{x \to b}\dfrac{{{\sin }^{2}}x}{{{x}^{2}}}=1\], therefore we can say that \[\displaystyle \lim_{x \to {{3}^{+}}}\dfrac{{{\sin }^{2}}\dfrac{\left( x-3 \right)}{2}}{\dfrac{{{\left( x-3 \right)}^{2}}}{4}}=1\], hence, we can write above expression as:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{+}}}\dfrac{\left( x-3 \right)}{4}.\dfrac{2\lambda }{\tan \left( x-3 \right)}\]
We know that \[\displaystyle \lim_{x \to {{3}^{+}}}\dfrac{\tan \left( x-3 \right)}{\left( x-3 \right)}=1\], therefore we can write above expression as:
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{+}}}\dfrac{2\lambda }{4}\]
\[\Rightarrow \dfrac{\lambda }{2}\]
Therefore, right-hand side limit of the function is equal to \[\dfrac{\lambda }{2}\]which means that
\[\Rightarrow \displaystyle \lim_{x \to {{3}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{3}^{+}}}\lambda .\dfrac{1-\cos \left( x-3 \right)}{\left( x-3 \right)\tan \left( x-3 \right)}=\dfrac{\lambda }{2}\]
We know that \[\displaystyle \lim_{x \to {{3}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{3}^{+}}}f\left( x \right)\], therefore we can write:
\[\Rightarrow -\infty =\dfrac{\lambda }{2}\]
\[\Rightarrow \lambda =-\infty \]
As we know the value of \[\lambda \], we can now find the value of \[8100\lambda \], we get:
\[\Rightarrow 8100\lambda =8100\left( -\infty \right)\]
\[\Rightarrow 8100\lambda =-\infty \]
Therefore, the value of \[8100\lambda \] is equal to \[-\infty \].
Note: Students can make calculation mistakes, while solving this type of question. It’s better to recheck the answer after solving it. Also remember the key points, that are \[\displaystyle \lim_{x \to b}\dfrac{{{a}^{x}}-1}{x}=1\], \[\left( a \right)\ln \left( b \right)=\ln {{\left( b \right)}^{a}}\], \[{{e}^{\ln a}}=a\] and \[1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

