
If \[f\left( x \right)=\dfrac{\cos x}{{{\left( 1-\sin x \right)}^{\dfrac{1}{3}}}}\], then
A. \[\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)=-\infty \]
B. \[\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)=1\]
C. \[\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)=\infty \]
D. None of these
Answer
499.2k+ views
Hint: We first change the variable with the relation \[x=h+\dfrac{\pi }{2}\]. We also change the limit and find the trigonometric values. Then we use the submultiple formulas like \[\left( 1-\cosh \right)=2{{\sin }^{2}}\dfrac{h}{2}\] and \[\sin \left( h \right)=2\sin \dfrac{h}{2}\cos \dfrac{h}{2}\]. We find the limit value placing the $h=0$.
Complete step-by-step answer:
We first change the variable for the limit \[\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)\] with \[f\left( x \right)=\dfrac{\cos x}{{{\left( 1-\sin x \right)}^{\dfrac{1}{3}}}}\].
As \[x\to \dfrac{\pi }{2}\], we take \[h=x-\dfrac{\pi }{2}\to 0\]. We get \[x=h+\dfrac{\pi }{2}\]
So, \[\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,\dfrac{\cos x}{{{\left( 1-\sin x \right)}^{\dfrac{1}{3}}}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( h+\dfrac{\pi }{2} \right)}{{{\left( 1-\sin \left( h+\dfrac{\pi }{2} \right) \right)}^{\dfrac{1}{3}}}}\].
We have \[\cos \left( h+\dfrac{\pi }{2} \right)=-\sin \left( h \right);\sin \left( h+\dfrac{\pi }{2} \right)=\cos \left( h \right)\].
So, \[\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\sin \left( h \right)}{{{\left( 1-\cosh \right)}^{\dfrac{1}{3}}}}\].
We know that \[\left( 1-\cosh \right)=2{{\sin }^{2}}\dfrac{h}{2}\] and \[\sin \left( h \right)=2\sin \dfrac{h}{2}\cos \dfrac{h}{2}\].
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\sin \left( h \right)}{{{\left( 1-\cosh \right)}^{\dfrac{1}{3}}}} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\sin \dfrac{h}{2}\cos \dfrac{h}{2}}{{{\left( 2{{\sin }^{2}}\dfrac{h}{2} \right)}^{\dfrac{1}{3}}}} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\left( {{2}^{\dfrac{2}{3}}}{{\left( \sin \dfrac{h}{2} \right)}^{\dfrac{1}{3}}}\cos \dfrac{h}{2} \right) \\
\end{align}\]
We place the limits and get
\[\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( {{2}^{\dfrac{2}{3}}}{{\left( \sin \dfrac{h}{2} \right)}^{\dfrac{1}{3}}}\cos \dfrac{h}{2} \right)=0\].
This is because as h tends to zero sine value becomes zero and we know that anything multiplied by zero will be zero.
So, the correct answer is “Option D”.
Note: We could also have used the main formulas for the main expression where \[\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}\] and \[1-\sin x={{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}\]. Then we simplify the expression to place the limit value and find its solution.
In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.
Complete step-by-step answer:
We first change the variable for the limit \[\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)\] with \[f\left( x \right)=\dfrac{\cos x}{{{\left( 1-\sin x \right)}^{\dfrac{1}{3}}}}\].
As \[x\to \dfrac{\pi }{2}\], we take \[h=x-\dfrac{\pi }{2}\to 0\]. We get \[x=h+\dfrac{\pi }{2}\]
So, \[\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,\dfrac{\cos x}{{{\left( 1-\sin x \right)}^{\dfrac{1}{3}}}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( h+\dfrac{\pi }{2} \right)}{{{\left( 1-\sin \left( h+\dfrac{\pi }{2} \right) \right)}^{\dfrac{1}{3}}}}\].
We have \[\cos \left( h+\dfrac{\pi }{2} \right)=-\sin \left( h \right);\sin \left( h+\dfrac{\pi }{2} \right)=\cos \left( h \right)\].
So, \[\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\sin \left( h \right)}{{{\left( 1-\cosh \right)}^{\dfrac{1}{3}}}}\].
We know that \[\left( 1-\cosh \right)=2{{\sin }^{2}}\dfrac{h}{2}\] and \[\sin \left( h \right)=2\sin \dfrac{h}{2}\cos \dfrac{h}{2}\].
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\sin \left( h \right)}{{{\left( 1-\cosh \right)}^{\dfrac{1}{3}}}} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\sin \dfrac{h}{2}\cos \dfrac{h}{2}}{{{\left( 2{{\sin }^{2}}\dfrac{h}{2} \right)}^{\dfrac{1}{3}}}} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\left( {{2}^{\dfrac{2}{3}}}{{\left( \sin \dfrac{h}{2} \right)}^{\dfrac{1}{3}}}\cos \dfrac{h}{2} \right) \\
\end{align}\]
We place the limits and get
\[\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( {{2}^{\dfrac{2}{3}}}{{\left( \sin \dfrac{h}{2} \right)}^{\dfrac{1}{3}}}\cos \dfrac{h}{2} \right)=0\].
This is because as h tends to zero sine value becomes zero and we know that anything multiplied by zero will be zero.
So, the correct answer is “Option D”.
Note: We could also have used the main formulas for the main expression where \[\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}\] and \[1-\sin x={{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}\]. Then we simplify the expression to place the limit value and find its solution.
In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

