
If $ f\left( x \right) $ satisfies the relation $ f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) $ for all $ x,y \in R $ , and $ f\left( 1 \right) = 5 $ , then:
A. $ f\left( x \right) $ is an odd function
B. $ f\left( x \right) $ is an even function
C. $ \sum\limits_{r = 1}^m {f\left( r \right)} = {5^{m + 1}}{C_2} $
D. $ \sum\limits_{r = 1}^m {f\left( r \right)} = \dfrac{{5m\left( {m + 2} \right)}}{3} $
Answer
566.4k+ views
Hint: Check the properties of the function given in the question whether the given function is odd or even. Also check that the sum $ \sum\limits_{r = 1}^m {f\left( r \right)} $ for the given function and check the correct options.
Complete step-by-step answer:
Assume that $ x = y = 0 $ , then according to the relationship given in question:
$
f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) \\
f\left( {0 + 0} \right) = f\left( 0 \right) + f\left( 0 \right) \\
f\left( 0 \right) = 0 \\
$
Now let us consider $ y = - x $ and check the nature of function.
$
f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) \\
f\left( {x + \left( { - x} \right)} \right) = f\left( x \right) + f\left( { - x} \right) \\
f\left( 0 \right) = f\left( x \right) + f\left( { - x} \right) \\
0 = f\left( x \right) + f\left( { - x} \right) \\
f\left( x \right) = - f\left( { - x} \right) \\
$
As the function satisfies the relation $ f\left( x \right) = - f\left( { - x} \right) $ . So, the function $ f\left( x \right) $ is an odd function.
An odd function is never an even function. So, the function $ f\left( x \right) $ is not an even function.
Now let us check the sum $ \sum\limits_{r = 1}^m {f\left( r \right)} $ .
Let $ x = y = 1 $ in the property given,
$
f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) \\
f\left( {1 + 1} \right) = f\left( 1 \right) + f\left( 1 \right) \\
f\left( 2 \right) = 2f\left( 1 \right) \\
f\left( 2 \right) = 2 \times 5 \\
f\left( 2 \right) = 10 \\
$
Let $ x = 2,y = 1 $ in the property given,
$
f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) \\
f\left( {2 + 1} \right) = f\left( 2 \right) + f\left( 1 \right) \\
f\left( 3 \right) = 10 + 5 \\
f\left( 3 \right) = 15 \\
$
Similarly move up to the term when $ x = k - 1,y = 1 $ in the property given,
$
f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) \\
f\left( {\left( {k - 1} \right) + 1} \right) = f\left( {k - 1} \right) + f\left( 1 \right) \\
f\left( k \right) = k \times 5 \\
f\left( k \right) = 5k \\
$
Now simplify the sum $ \sum\limits_{r = 1}^m {f\left( r \right)} $ .
$
\sum\limits_{r = 1}^m {f\left( r \right)} = f\left( 1 \right) + f\left( 2 \right) + \ldots + f\left( m \right) \\
= 5 + 10 + \ldots + 5m \\
= 5\left( {1 + 2 + \ldots + m} \right) \\
= \dfrac{{5m\left( {m + 1} \right)}}{2} \\
= {5^{m + 1}}{C_2} \\
$
So, the sum $ \sum\limits_{r = 1}^m {f\left( r \right)} $ is equal to $ {5^{m + 1}}{C_2} $ .
Hence, the correct options are A and C.
So, the correct answer is “Option A and C”.
Note: Check the formula of permutations to check the value of $ {5^{m + 1}}{C_2} $ is equal to $ \dfrac{{5m\left( {m + 1} \right)}}{2} $ . Use the mathematical induction concept to get the value of each functional value in general. Also revise the properties about the nature of a function as is even or odd.
Complete step-by-step answer:
Assume that $ x = y = 0 $ , then according to the relationship given in question:
$
f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) \\
f\left( {0 + 0} \right) = f\left( 0 \right) + f\left( 0 \right) \\
f\left( 0 \right) = 0 \\
$
Now let us consider $ y = - x $ and check the nature of function.
$
f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) \\
f\left( {x + \left( { - x} \right)} \right) = f\left( x \right) + f\left( { - x} \right) \\
f\left( 0 \right) = f\left( x \right) + f\left( { - x} \right) \\
0 = f\left( x \right) + f\left( { - x} \right) \\
f\left( x \right) = - f\left( { - x} \right) \\
$
As the function satisfies the relation $ f\left( x \right) = - f\left( { - x} \right) $ . So, the function $ f\left( x \right) $ is an odd function.
An odd function is never an even function. So, the function $ f\left( x \right) $ is not an even function.
Now let us check the sum $ \sum\limits_{r = 1}^m {f\left( r \right)} $ .
Let $ x = y = 1 $ in the property given,
$
f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) \\
f\left( {1 + 1} \right) = f\left( 1 \right) + f\left( 1 \right) \\
f\left( 2 \right) = 2f\left( 1 \right) \\
f\left( 2 \right) = 2 \times 5 \\
f\left( 2 \right) = 10 \\
$
Let $ x = 2,y = 1 $ in the property given,
$
f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) \\
f\left( {2 + 1} \right) = f\left( 2 \right) + f\left( 1 \right) \\
f\left( 3 \right) = 10 + 5 \\
f\left( 3 \right) = 15 \\
$
Similarly move up to the term when $ x = k - 1,y = 1 $ in the property given,
$
f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) \\
f\left( {\left( {k - 1} \right) + 1} \right) = f\left( {k - 1} \right) + f\left( 1 \right) \\
f\left( k \right) = k \times 5 \\
f\left( k \right) = 5k \\
$
Now simplify the sum $ \sum\limits_{r = 1}^m {f\left( r \right)} $ .
$
\sum\limits_{r = 1}^m {f\left( r \right)} = f\left( 1 \right) + f\left( 2 \right) + \ldots + f\left( m \right) \\
= 5 + 10 + \ldots + 5m \\
= 5\left( {1 + 2 + \ldots + m} \right) \\
= \dfrac{{5m\left( {m + 1} \right)}}{2} \\
= {5^{m + 1}}{C_2} \\
$
So, the sum $ \sum\limits_{r = 1}^m {f\left( r \right)} $ is equal to $ {5^{m + 1}}{C_2} $ .
Hence, the correct options are A and C.
So, the correct answer is “Option A and C”.
Note: Check the formula of permutations to check the value of $ {5^{m + 1}}{C_2} $ is equal to $ \dfrac{{5m\left( {m + 1} \right)}}{2} $ . Use the mathematical induction concept to get the value of each functional value in general. Also revise the properties about the nature of a function as is even or odd.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

