
If $f\left( x \right) = \left[ {\tan \dfrac{\pi }{4} + \tan x} \right]\left[ {\tan \dfrac{\pi }{4} + \tan \left( {\dfrac{\pi }{4} - x} \right)} \right]$ and $g\left( x \right) = x\left( {x + 1} \right)$ the value of $g'\left[ {f\left( x \right)} \right]$ is equal to
A. $\dfrac{1}{{1 + {x^2}}}$
B. $4$
C. $5$
D. $\dfrac{{2x}}{{1 + {x^2}}}$
Answer
462.6k+ views
Hint: Here we are two equations containing trigonometric values and we are asked to find the value of. Before getting into the question, we should solve and simplify the given equations as much as possible we can. Then, we need to find the first derivative of $g\left( x \right) = {x^2} + x$. And then, we shall calculate the value $g'\left[ {f\left( x \right)} \right]$. Formula to be used:
a) $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
b) $\tan \dfrac{\pi }{4} = 1$
c) The power rule for differentiation is as follows.
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
Complete step-by-step answer:
It is given that $f\left( x \right) = \left[ {\tan \dfrac{\pi }{4} + \tan x} \right]\left[ {\tan \dfrac{\pi }{4} + \tan \left( {\dfrac{\pi }{4} - x} \right)} \right]$
First, we shall solve the above-given equation.
$f\left( x \right) = \left[ {\tan \dfrac{\pi }{4} + \tan x} \right]\left[ {\tan \dfrac{\pi }{4} + \tan \left( {\dfrac{\pi }{4} - x} \right)} \right]$
$ \Rightarrow \left[ {1 + \tan x} \right]\left[ {1 + \tan \left( {\dfrac{\pi }{4} - x} \right)} \right]$ (Here we applied $\tan \dfrac{\pi }{4} = 1$)
$ \Rightarrow \left[ {1 + \tan x} \right]\left[ {1 + \dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}}} \right]$
(Since $\tan \left( {\dfrac{\pi }{4} - x} \right)$ is in the format $\tan \left( {A - B} \right)$, we have used $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$where $A = \dfrac{\pi }{4}$ and $B = 1$)
$ \Rightarrow \left[ {1 + \tan x} \right]\left[ {1 + \dfrac{{1 - \tan x}}{{1 + 1 \times \tan x}}} \right]$ (Here we applied $\tan \dfrac{\pi }{4} = 1$)
$ \Rightarrow \left[ {1 + \tan x} \right]\left[ {1 + \dfrac{{1 - \tan x}}{{1 + \tan x}}} \right]$
$ \Rightarrow \left[ {1 + \tan x} \right]\left[ {\dfrac{{1 + \tan x + 1 - \tan x}}{{1 + \tan x}}} \right]$
$ \Rightarrow \left[ {1 + \tan x} \right]\left[ {\dfrac{2}{{1 + \tan x}}} \right]$
$ \Rightarrow 2$
So, we have simplified the given equation and we get $f\left( x \right) = 2$ .
We are also given another equation $g\left( x \right) = x\left( {x + 1} \right)$.
Now, we also need to simplify the above equation.
$g\left( x \right) = x\left( {x + 1} \right)$
$ \Rightarrow {x^2} + x$
So, we have simplified the given equation and we get $g\left( x \right) = {x^2} + x$ .
We are asked to calculate $g'\left[ {f\left( x \right)} \right]$.
Before that, we need to find the derivative of $g\left( x \right)$ .
$\dfrac{d}{{dx}}\left( {g\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {{x^2} + x} \right)$
$ \Rightarrow g'\left( x \right) = 2{x^{2 - 1}} + 1 \times {x^{1 - 1}}$ (Now we have applied the power rule for differentiation, $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$)
$ \Rightarrow g'\left( x \right) = 2x + {x^0}$ (We know that the value of anything power zero always equals to one)
$ \Rightarrow g'\left( x \right) = 2x + 1$
We are asked to calculate $g'\left[ {f\left( x \right)} \right]$.
We have $f\left( x \right) = 2$and $g'\left( x \right) = 2x + 1$ .
Thus, $g'\left[ {f\left( x \right)} \right] = 2 \times 2 + 1$
$g'\left[ {f\left( x \right)} \right] = 4 + 1$
$g'\left[ {f\left( x \right)} \right] = 5$
Hence, we get $g'\left[ {f\left( x \right)} \right] = 5$ and the option $C$ is correct.
So, the correct answer is “Option C”.
Note: Whenever our question involves trigonometry, we should be able to obtain the required formula and trigonometric identities for the given problem. Since we are asked to calculate the first derivation, we need to use the required formula for differentiation. And here, we have applied the power rule of differentiation.
a) $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
b) $\tan \dfrac{\pi }{4} = 1$
c) The power rule for differentiation is as follows.
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
Complete step-by-step answer:
It is given that $f\left( x \right) = \left[ {\tan \dfrac{\pi }{4} + \tan x} \right]\left[ {\tan \dfrac{\pi }{4} + \tan \left( {\dfrac{\pi }{4} - x} \right)} \right]$
First, we shall solve the above-given equation.
$f\left( x \right) = \left[ {\tan \dfrac{\pi }{4} + \tan x} \right]\left[ {\tan \dfrac{\pi }{4} + \tan \left( {\dfrac{\pi }{4} - x} \right)} \right]$
$ \Rightarrow \left[ {1 + \tan x} \right]\left[ {1 + \tan \left( {\dfrac{\pi }{4} - x} \right)} \right]$ (Here we applied $\tan \dfrac{\pi }{4} = 1$)
$ \Rightarrow \left[ {1 + \tan x} \right]\left[ {1 + \dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}}} \right]$
(Since $\tan \left( {\dfrac{\pi }{4} - x} \right)$ is in the format $\tan \left( {A - B} \right)$, we have used $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$where $A = \dfrac{\pi }{4}$ and $B = 1$)
$ \Rightarrow \left[ {1 + \tan x} \right]\left[ {1 + \dfrac{{1 - \tan x}}{{1 + 1 \times \tan x}}} \right]$ (Here we applied $\tan \dfrac{\pi }{4} = 1$)
$ \Rightarrow \left[ {1 + \tan x} \right]\left[ {1 + \dfrac{{1 - \tan x}}{{1 + \tan x}}} \right]$
$ \Rightarrow \left[ {1 + \tan x} \right]\left[ {\dfrac{{1 + \tan x + 1 - \tan x}}{{1 + \tan x}}} \right]$
$ \Rightarrow \left[ {1 + \tan x} \right]\left[ {\dfrac{2}{{1 + \tan x}}} \right]$
$ \Rightarrow 2$
So, we have simplified the given equation and we get $f\left( x \right) = 2$ .
We are also given another equation $g\left( x \right) = x\left( {x + 1} \right)$.
Now, we also need to simplify the above equation.
$g\left( x \right) = x\left( {x + 1} \right)$
$ \Rightarrow {x^2} + x$
So, we have simplified the given equation and we get $g\left( x \right) = {x^2} + x$ .
We are asked to calculate $g'\left[ {f\left( x \right)} \right]$.
Before that, we need to find the derivative of $g\left( x \right)$ .
$\dfrac{d}{{dx}}\left( {g\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {{x^2} + x} \right)$
$ \Rightarrow g'\left( x \right) = 2{x^{2 - 1}} + 1 \times {x^{1 - 1}}$ (Now we have applied the power rule for differentiation, $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$)
$ \Rightarrow g'\left( x \right) = 2x + {x^0}$ (We know that the value of anything power zero always equals to one)
$ \Rightarrow g'\left( x \right) = 2x + 1$
We are asked to calculate $g'\left[ {f\left( x \right)} \right]$.
We have $f\left( x \right) = 2$and $g'\left( x \right) = 2x + 1$ .
Thus, $g'\left[ {f\left( x \right)} \right] = 2 \times 2 + 1$
$g'\left[ {f\left( x \right)} \right] = 4 + 1$
$g'\left[ {f\left( x \right)} \right] = 5$
Hence, we get $g'\left[ {f\left( x \right)} \right] = 5$ and the option $C$ is correct.
So, the correct answer is “Option C”.
Note: Whenever our question involves trigonometry, we should be able to obtain the required formula and trigonometric identities for the given problem. Since we are asked to calculate the first derivation, we need to use the required formula for differentiation. And here, we have applied the power rule of differentiation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

