
If $f\left( x \right) = \left\{ \begin{gathered}
\dfrac{{{e^{2x}} - 1}}{{ax}},{\text{ for }}x < 0,a \ne 0 \\
1,{\text{ for }}x = 0 \\
\dfrac{{\log \left( {1 + 7x} \right)}}{{bx}},{\text{ for }}x > 0,b \ne 0 \\
\end{gathered} \right\}$ is continuous at x = 0, then find the values of a and b.
Answer
580.8k+ views
Hint: Here, we will proceed by finding the left hand limit (LHL), the right hand limit (RHL) and the value of the function at the point where the function is given continuous (x = 0). Then, we will use the concept that LHL at that point = Value of the function at that point = RHL at that point.
Complete step-by-step answer:
Given function is $f\left( x \right) = \left\{ \begin{gathered}
\dfrac{{{e^{2x}} - 1}}{{ax}},{\text{ for }}x < 0,a \ne 0 \\
1,{\text{ for }}x = 0 \\
\dfrac{{\log \left( {1 + 7x} \right)}}{{bx}},{\text{ for }}x > 0,b \ne 0 \\
\end{gathered} \right\}$
LHL at x = 0 = $f\left( {{0^ - }} \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( {x < 0} \right)$
$ \Rightarrow f\left( {{0^ - }} \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{{e^{2x}} - 1}}{{ax}}$
Put x = 0-h $ \Rightarrow $x = -h (by doing so $\mathop {\lim }\limits_{x \to {0^ - }} $ will become $\mathop {\lim }\limits_{h \to 0} $), the above equation becomes
\[
\Rightarrow f\left( {{0^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{2\left( { - h} \right)}} - 1}}{{a\left( { - h} \right)}} \\
\Rightarrow f\left( {{0^ - }} \right) = - \left( {\dfrac{1}{a}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{ - 2h}} - 1}}{h} \\
\]
The above limit corresponds to $\dfrac{0}{0}$ form which can be solved using L-Hospital’s rule in which both the numerator and denominator of the limit is differentiated with respect to the variable (i.e., h)
\[ \Rightarrow f\left( {{0^ - }} \right) = - \left( {\dfrac{1}{a}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{d}{{dh}}\left( {{e^{ - 2h}} - 1} \right)}}{{\dfrac{{dh}}{{dh}}}}\]
Using the formula \[\dfrac{d}{{dh}}\left( {{e^{ch}}} \right) = c{e^{ch}}\] (where c is any constant) in the above equation, we get
\[
\Rightarrow f\left( {{0^ - }} \right) = - \left( {\dfrac{1}{a}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2{e^{ - 2h}}}}{1} \\
\Rightarrow f\left( {{0^ - }} \right) = \left( {\dfrac{2}{a}} \right)\mathop {\lim }\limits_{h \to 0} {e^{ - 2h}} \\
\Rightarrow f\left( {{0^ - }} \right) = \left( {\dfrac{2}{a}} \right)\left( {{e^{ - 2 \times 0}}} \right) \\
\Rightarrow f\left( {{0^ - }} \right) = \left( {\dfrac{2}{a}} \right)\left( {{e^0}} \right) \\
\Rightarrow f\left( {{0^ - }} \right) = \left( {\dfrac{2}{a}} \right)\left( 1 \right) \\
\Rightarrow f\left( {{0^ - }} \right) = \dfrac{2}{a}{\text{ }} \to {\text{(1)}} \\
\]
Value of the function at x = 0 = \[f\left( 0 \right) = f\left( {x = 0} \right)\]
\[ \Rightarrow f\left( 0 \right) = 1{\text{ }} \to {\text{(2)}}\]
RHL at x = 0 = $f\left( {{0^ + }} \right) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( {x > 0} \right)$
$ \Rightarrow f\left( {{0^ + }} \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\log \left( {1 + 7x} \right)}}{{bx}}$
Put x = 0+h $ \Rightarrow $x = h (by doing so $\mathop {\lim }\limits_{x \to {0^ + }} $ will become $\mathop {\lim }\limits_{h \to 0} $), the above equation becomes
\[
\Rightarrow f\left( {{0^ + }} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\log \left( {1 + 7h} \right)}}{{bh}} \\
\Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{1}{b}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{\log \left( {1 + 7h} \right)}}{h} \\
\]
The above limit corresponds to $\dfrac{0}{0}$ form which can be solved using L-Hospital’s rule in which both the numerator and denominator of the limit is differentiated with respect to the variable (i.e., h)
\[ \Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{1}{b}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{d}{{dh}}\left( {\log \left( {1 + 7h} \right)} \right)}}{{\dfrac{{dh}}{{dh}}}}\]
Using the formula \[\dfrac{d}{{dh}}\left( {\log \left[ {f\left( h \right)} \right]} \right) = \dfrac{1}{{f\left( h \right)}}\dfrac{d}{{dh}}\left( {f\left( h \right)} \right)\] in the above equation, we get
\[
\Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{1}{b}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\dfrac{1}{{1 + 7h}}} \right)\left[ {\dfrac{d}{{dh}}\left( {7h} \right)} \right]}}{1} \\
\Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{1}{b}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{7}{{1 + 7h}} \\
\Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{7}{b}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{1}{{1 + 7h}} \\
\Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{7}{b}} \right)\left[ {\dfrac{1}{{1 + \left( {7 \times 0} \right)}}} \right] \\
\Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{7}{b}} \right)\left[ {\dfrac{1}{{1 + \left( {7 \times 0} \right)}}} \right] \\
\Rightarrow f\left( {{0^ + }} \right) = \dfrac{7}{b}{\text{ }} \to {\text{(3)}} \\
\]
Given, this function is continuous at x = 0 so the left hand limit at x = 0 will be equal to the value of the function at x = 0 which will be further equal to the right hand limit at x = 0
i.e., $f\left( {{0^ - }} \right) = f\left( 0 \right) = f\left( {{0^ + }} \right)$
By using equations (1), (2) and (3), we get
$\dfrac{2}{a} = 1 = \dfrac{7}{b}{\text{ }} \to {\text{(4)}}$
Taking $\dfrac{2}{a} = 1$ from equation (4), we have
$ \Rightarrow a = 2$
Taking $1 = \dfrac{7}{b}$ from equation (4), we have
$ \Rightarrow b = 7$
Therefore, the values of a and b are 2 and 7 respectively.
Note:In this particular problem, for the LHL of the function at x = 0, the considered function is $f\left( x \right) = \dfrac{{{e^{2x}} - 1}}{{ax}}$ because this is the definition of the function for x<0. For the value of the function at x = 0, $f\left( x \right) = 1$ as given. For the RHL of the function at x = 0, the considered function is \[f\left( x \right) = \dfrac{{\log \left( {1 + 7x} \right)}}{{bx}}\] because this is the definition of the function for x> 0.
Complete step-by-step answer:
Given function is $f\left( x \right) = \left\{ \begin{gathered}
\dfrac{{{e^{2x}} - 1}}{{ax}},{\text{ for }}x < 0,a \ne 0 \\
1,{\text{ for }}x = 0 \\
\dfrac{{\log \left( {1 + 7x} \right)}}{{bx}},{\text{ for }}x > 0,b \ne 0 \\
\end{gathered} \right\}$
LHL at x = 0 = $f\left( {{0^ - }} \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( {x < 0} \right)$
$ \Rightarrow f\left( {{0^ - }} \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{{e^{2x}} - 1}}{{ax}}$
Put x = 0-h $ \Rightarrow $x = -h (by doing so $\mathop {\lim }\limits_{x \to {0^ - }} $ will become $\mathop {\lim }\limits_{h \to 0} $), the above equation becomes
\[
\Rightarrow f\left( {{0^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{2\left( { - h} \right)}} - 1}}{{a\left( { - h} \right)}} \\
\Rightarrow f\left( {{0^ - }} \right) = - \left( {\dfrac{1}{a}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{ - 2h}} - 1}}{h} \\
\]
The above limit corresponds to $\dfrac{0}{0}$ form which can be solved using L-Hospital’s rule in which both the numerator and denominator of the limit is differentiated with respect to the variable (i.e., h)
\[ \Rightarrow f\left( {{0^ - }} \right) = - \left( {\dfrac{1}{a}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{d}{{dh}}\left( {{e^{ - 2h}} - 1} \right)}}{{\dfrac{{dh}}{{dh}}}}\]
Using the formula \[\dfrac{d}{{dh}}\left( {{e^{ch}}} \right) = c{e^{ch}}\] (where c is any constant) in the above equation, we get
\[
\Rightarrow f\left( {{0^ - }} \right) = - \left( {\dfrac{1}{a}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2{e^{ - 2h}}}}{1} \\
\Rightarrow f\left( {{0^ - }} \right) = \left( {\dfrac{2}{a}} \right)\mathop {\lim }\limits_{h \to 0} {e^{ - 2h}} \\
\Rightarrow f\left( {{0^ - }} \right) = \left( {\dfrac{2}{a}} \right)\left( {{e^{ - 2 \times 0}}} \right) \\
\Rightarrow f\left( {{0^ - }} \right) = \left( {\dfrac{2}{a}} \right)\left( {{e^0}} \right) \\
\Rightarrow f\left( {{0^ - }} \right) = \left( {\dfrac{2}{a}} \right)\left( 1 \right) \\
\Rightarrow f\left( {{0^ - }} \right) = \dfrac{2}{a}{\text{ }} \to {\text{(1)}} \\
\]
Value of the function at x = 0 = \[f\left( 0 \right) = f\left( {x = 0} \right)\]
\[ \Rightarrow f\left( 0 \right) = 1{\text{ }} \to {\text{(2)}}\]
RHL at x = 0 = $f\left( {{0^ + }} \right) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( {x > 0} \right)$
$ \Rightarrow f\left( {{0^ + }} \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\log \left( {1 + 7x} \right)}}{{bx}}$
Put x = 0+h $ \Rightarrow $x = h (by doing so $\mathop {\lim }\limits_{x \to {0^ + }} $ will become $\mathop {\lim }\limits_{h \to 0} $), the above equation becomes
\[
\Rightarrow f\left( {{0^ + }} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\log \left( {1 + 7h} \right)}}{{bh}} \\
\Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{1}{b}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{\log \left( {1 + 7h} \right)}}{h} \\
\]
The above limit corresponds to $\dfrac{0}{0}$ form which can be solved using L-Hospital’s rule in which both the numerator and denominator of the limit is differentiated with respect to the variable (i.e., h)
\[ \Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{1}{b}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{d}{{dh}}\left( {\log \left( {1 + 7h} \right)} \right)}}{{\dfrac{{dh}}{{dh}}}}\]
Using the formula \[\dfrac{d}{{dh}}\left( {\log \left[ {f\left( h \right)} \right]} \right) = \dfrac{1}{{f\left( h \right)}}\dfrac{d}{{dh}}\left( {f\left( h \right)} \right)\] in the above equation, we get
\[
\Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{1}{b}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\dfrac{1}{{1 + 7h}}} \right)\left[ {\dfrac{d}{{dh}}\left( {7h} \right)} \right]}}{1} \\
\Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{1}{b}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{7}{{1 + 7h}} \\
\Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{7}{b}} \right)\mathop {\lim }\limits_{h \to 0} \dfrac{1}{{1 + 7h}} \\
\Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{7}{b}} \right)\left[ {\dfrac{1}{{1 + \left( {7 \times 0} \right)}}} \right] \\
\Rightarrow f\left( {{0^ + }} \right) = \left( {\dfrac{7}{b}} \right)\left[ {\dfrac{1}{{1 + \left( {7 \times 0} \right)}}} \right] \\
\Rightarrow f\left( {{0^ + }} \right) = \dfrac{7}{b}{\text{ }} \to {\text{(3)}} \\
\]
Given, this function is continuous at x = 0 so the left hand limit at x = 0 will be equal to the value of the function at x = 0 which will be further equal to the right hand limit at x = 0
i.e., $f\left( {{0^ - }} \right) = f\left( 0 \right) = f\left( {{0^ + }} \right)$
By using equations (1), (2) and (3), we get
$\dfrac{2}{a} = 1 = \dfrac{7}{b}{\text{ }} \to {\text{(4)}}$
Taking $\dfrac{2}{a} = 1$ from equation (4), we have
$ \Rightarrow a = 2$
Taking $1 = \dfrac{7}{b}$ from equation (4), we have
$ \Rightarrow b = 7$
Therefore, the values of a and b are 2 and 7 respectively.
Note:In this particular problem, for the LHL of the function at x = 0, the considered function is $f\left( x \right) = \dfrac{{{e^{2x}} - 1}}{{ax}}$ because this is the definition of the function for x<0. For the value of the function at x = 0, $f\left( x \right) = 1$ as given. For the RHL of the function at x = 0, the considered function is \[f\left( x \right) = \dfrac{{\log \left( {1 + 7x} \right)}}{{bx}}\] because this is the definition of the function for x> 0.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

How is democracy better than other forms of government class 12 social science CBSE

What is virtual and erect image ?

Explain the energy losses in the transformer How are class 12 physics CBSE

