
If $f\left( x \right)$ is defined on $\left[ -2,2 \right]$ and given by $f\left( x \right)=\left\{ \begin{matrix}
-1,\text{ }-2\le x\le 0 \\
x-1,\text{ }0\le x\le 2 \\
\end{matrix} \right.$ and $g\left( x \right)=f\left( \left| x \right| \right)+\left| f\left( x \right) \right|$. Find $g\left( x \right)$
Answer
542.4k+ views
Hint: We will find the values of $f\left( \left| x \right| \right)$ and $\left| f\left( x \right) \right|$ by using the function $f\left( x \right)$ individually and adding them up to get the value of $g\left( x \right)$.
Complete step by step solution:
Given that,
$f\left( x \right)=\left\{ \begin{matrix}
-1,\text{ }-2\le x\le 0 \\
x-1,\text{ }0\le x\le 2 \\
\end{matrix} \right.$
The function $\left| x \right|$ convert the $-ve$ values into $+ve$ values i.e. the result of the function $\left| x \right|$ should be a $+ve$ value. We get the $+ve$ value from the function $\left| x \right|$ by substituting the appropriate value either $+x$ or $-x$ to get the result of function as $+ve$. Mathematically
$\left| x \right|=\left\{ \begin{matrix}
+x,\text{ for }x\ge 0 \\
-x,\text{ for }x<0 \\
\end{matrix} \right.$
Here we have $x\in \left[ -2,2 \right]$ then $\left| x \right|\in \left[ 0,2 \right]$, so
$f\left( \left| x \right| \right)=\left| x \right|-1$ for all $x\in \left[ -2,2 \right]$
Substitute the function $\left| x \right|$ in above equation,
$f\left( \left| x \right| \right)=\left\{ \begin{matrix}
x-1,\text{ }0\le x\le 2 \\
-x-1,\text{ }-2\le x<0 \\
\end{matrix} \right.$
Now the value of $\left| f\left( x \right) \right|$ is
$\begin{align}
& \left| f\left( x \right) \right|=\left\{ \begin{matrix}
\left| -1 \right|,\text{ }-2\le x<0 \\
\left| x-1 \right|,\text{ }0\le x\le 2 \\
\end{matrix} \right. \\
& =\left\{ \begin{matrix}
1,\text{ }-2\le x<0 \\
\left| x-1 \right|,\text{ }0\le x\le 2 \\
\end{matrix} \right.
\end{align}$
Now we have to change the value of $\left| x-1 \right|$ in the range of $\left[ 0,2 \right]$ to get a $+ve$. Hence we will take $+\left( x-1 \right)$ for $1\le x\le 2$ and we will take $-\left( x-1 \right)$ for $0\le x<1$. Mathematically we can write it as
$\left| x-1 \right|=\left\{ \begin{matrix}
x-1,\text{ }1\le x\le 2 \\
1-x,\text{ }0\le x<1 \\
\end{matrix} \right.$
Hence the value of $\left| f\left( x \right) \right|$ is
$\left| f\left( x \right) \right|=\left\{ \begin{matrix}
1,\text{ }-2\le x<0 \\
1-x,\text{ }0\le x<1 \\
x-1,\text{ }1\le x\le 2 \\
\end{matrix} \right.$
Now we have given that $g\left( x \right)=f\left( \left| x \right| \right)+\left| f\left( x \right) \right|$, so
$\begin{align}
& g\left( x \right)=\left\{ \begin{matrix}
-x-1,\text{ }-2\le x\le 0 \\
x-1,\text{ }0\le x<1 \\
x-1,\text{ }1\le x\le 2 \\
\end{matrix} \right.+\left\{ \begin{matrix}
1,\text{ }-2\le x<0 \\
1-x,\text{ }0\le x<1 \\
x-1,\text{ }1\le x\le 2 \\
\end{matrix} \right. \\
& =\left\{ \begin{matrix}
-x-1+1,\text{ }-2\le x\le 0\text{ } \\
x-1+1-x,\text{ }0\le x<1 \\
x-1+x-1,\text{ }1\le x\le 2 \\
\end{matrix} \right. \\
& =\left\{ \begin{matrix}
-x,\text{ }-2\le x\le 0 \\
0,\text{ }0\le x<1 \\
2\left( x-1 \right),\text{ }1\le x\le 2 \\
\end{matrix} \right.
\end{align}$
Note: The value of $\left| x \right|$ in the function $f\left( \left| x \right| \right)$ is modified as $+x$ and $-x$ in the range of $x\in \left[ 0,2 \right]$ and $-2\le x<0$ respectively. While finding the value of $\left| f\left( x \right) \right|$ first apply mode function to the variables in the function $f\left( x \right)$ and then modify the variables based on the range of that variable in order to get a $+ve$ value.
Complete step by step solution:
Given that,
$f\left( x \right)=\left\{ \begin{matrix}
-1,\text{ }-2\le x\le 0 \\
x-1,\text{ }0\le x\le 2 \\
\end{matrix} \right.$
The function $\left| x \right|$ convert the $-ve$ values into $+ve$ values i.e. the result of the function $\left| x \right|$ should be a $+ve$ value. We get the $+ve$ value from the function $\left| x \right|$ by substituting the appropriate value either $+x$ or $-x$ to get the result of function as $+ve$. Mathematically
$\left| x \right|=\left\{ \begin{matrix}
+x,\text{ for }x\ge 0 \\
-x,\text{ for }x<0 \\
\end{matrix} \right.$
Here we have $x\in \left[ -2,2 \right]$ then $\left| x \right|\in \left[ 0,2 \right]$, so
$f\left( \left| x \right| \right)=\left| x \right|-1$ for all $x\in \left[ -2,2 \right]$
Substitute the function $\left| x \right|$ in above equation,
$f\left( \left| x \right| \right)=\left\{ \begin{matrix}
x-1,\text{ }0\le x\le 2 \\
-x-1,\text{ }-2\le x<0 \\
\end{matrix} \right.$
Now the value of $\left| f\left( x \right) \right|$ is
$\begin{align}
& \left| f\left( x \right) \right|=\left\{ \begin{matrix}
\left| -1 \right|,\text{ }-2\le x<0 \\
\left| x-1 \right|,\text{ }0\le x\le 2 \\
\end{matrix} \right. \\
& =\left\{ \begin{matrix}
1,\text{ }-2\le x<0 \\
\left| x-1 \right|,\text{ }0\le x\le 2 \\
\end{matrix} \right.
\end{align}$
Now we have to change the value of $\left| x-1 \right|$ in the range of $\left[ 0,2 \right]$ to get a $+ve$. Hence we will take $+\left( x-1 \right)$ for $1\le x\le 2$ and we will take $-\left( x-1 \right)$ for $0\le x<1$. Mathematically we can write it as
$\left| x-1 \right|=\left\{ \begin{matrix}
x-1,\text{ }1\le x\le 2 \\
1-x,\text{ }0\le x<1 \\
\end{matrix} \right.$
Hence the value of $\left| f\left( x \right) \right|$ is
$\left| f\left( x \right) \right|=\left\{ \begin{matrix}
1,\text{ }-2\le x<0 \\
1-x,\text{ }0\le x<1 \\
x-1,\text{ }1\le x\le 2 \\
\end{matrix} \right.$
Now we have given that $g\left( x \right)=f\left( \left| x \right| \right)+\left| f\left( x \right) \right|$, so
$\begin{align}
& g\left( x \right)=\left\{ \begin{matrix}
-x-1,\text{ }-2\le x\le 0 \\
x-1,\text{ }0\le x<1 \\
x-1,\text{ }1\le x\le 2 \\
\end{matrix} \right.+\left\{ \begin{matrix}
1,\text{ }-2\le x<0 \\
1-x,\text{ }0\le x<1 \\
x-1,\text{ }1\le x\le 2 \\
\end{matrix} \right. \\
& =\left\{ \begin{matrix}
-x-1+1,\text{ }-2\le x\le 0\text{ } \\
x-1+1-x,\text{ }0\le x<1 \\
x-1+x-1,\text{ }1\le x\le 2 \\
\end{matrix} \right. \\
& =\left\{ \begin{matrix}
-x,\text{ }-2\le x\le 0 \\
0,\text{ }0\le x<1 \\
2\left( x-1 \right),\text{ }1\le x\le 2 \\
\end{matrix} \right.
\end{align}$
Note: The value of $\left| x \right|$ in the function $f\left( \left| x \right| \right)$ is modified as $+x$ and $-x$ in the range of $x\in \left[ 0,2 \right]$ and $-2\le x<0$ respectively. While finding the value of $\left| f\left( x \right) \right|$ first apply mode function to the variables in the function $f\left( x \right)$ and then modify the variables based on the range of that variable in order to get a $+ve$ value.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

