
If $f\left( x \right) = \int\limits_0^x {{e^{\dfrac{{ - {x^2}}}{2}}}\left( {1 - {t^2}} \right)dt} $ minimum at \[x = \]
A) \[1\]
B) \[ - 1\]
C) \[2\]
D) \[ - 2\]
Answer
433.2k+ views
Hint: In order to solve for the minimum value at x, we need to know about integration and taking differentiation of the value under integration. For integration we know that, it is the reverse process of differentiation which is adding or summing of the parts. And for differentiation under integration, we would use the formula for a function \[f\left( x \right) = \int\limits_{a\left( x \right)}^{b\left( x \right)} {g\left( x \right)dx} \]which gives \[f'\left( x \right) = g\left( b \right)\dfrac{{d\left( b \right)}}{{dx}} - g\left( a \right)\dfrac{{d\left( a \right)}}{{dx}}\].
Formula used:
\[\dfrac{{dx}}{{dx}} = 1\]
\[\dfrac{{d0}}{{dx}} = 0\]
\[\dfrac{{d\left( {{e^{{x^n}}}} \right)}}{{dx}} = n{x^{n - 1}}{e^{{x^n}}}\]
\[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
$\dfrac{{d\left( {u.v} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete answer:
We have $f\left( x \right) = \int\limits_0^x {{e^{\dfrac{{ - {x^2}}}{2}}}\left( {1 - {t^2}} \right)dt} $
Taking out the value ${e^{\dfrac{{ - {x^2}}}{2}}}$from the integration, and we get:
$f\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\int\limits_0^x {\left( {1 - {t^2}} \right)dt} $
Since, we know that for a function:
\[f\left( x \right) = \int\limits_{a\left( x \right)}^{b\left( x \right)} {g\left( x \right)dx} \]
On differentiating with integral we know that the value would be:
\[f'\left( x \right) = g\left( b \right)\dfrac{{d\left( b \right)}}{{dx}} - g\left( a \right)\dfrac{{d\left( a \right)}}{{dx}}\]
Comparing \[f\left( x \right) = \int\limits_{a\left( x \right)}^{b\left( x \right)} {g\left( x \right)dx} \] with $f\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\int\limits_0^x {\left( {1 - {t^2}} \right)dt} $ we get:
\[
a = 0 \\
b = x \\
g\left( x \right) = 1 - {t^2} \\
\]
Substituting the values, we get:
\[f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {g\left( x \right)\dfrac{{d\left( x \right)}}{{dx}} - g\left( 0 \right)\dfrac{{d\left( 0 \right)}}{{dx}}} \right]\]
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {\left( {1 - {x^2}} \right)\dfrac{{d\left( x \right)}}{{dx}} - \left( {1 - {0^2}} \right)\dfrac{{d\left( 0 \right)}}{{dx}}} \right]\]
As, we know that \[\dfrac{{dx}}{{dx}} = 1\] and \[\dfrac{{d0}}{{dx}} = 0\]
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {\left( {1 - {x^2}} \right)1 - \left( {1 - {0^2}} \right)0} \right]\]
Solving it, we get:
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {\left( {1 - {x^2}} \right) - 0} \right]\]
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left( {1 - {x^2}} \right)\]
To find the critical points:
Putting \[f'(x) = 0\],we get:
\[1 - {x^2} = 0\]
Adding both sides by \[{x^2}\]:
\[
1 - {x^2} + {x^2} = 0 + {x^2} \\
\Rightarrow 1 = {x^2} \\
\Rightarrow {x^2} = 1 \\
\]
Taking square root both the sides:
\[ \Rightarrow \sqrt {{x^2}} = \sqrt 1 \]
We get \[x = \pm 1\]
Since, we have two functions inside the given function, so using the product rule, we are differentiating \[f'(x)\] with respect to \[x\] we get:
As, we know that:
$\dfrac{{d\left( {u.v} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Considering \[u = {e^{\dfrac{{ - {x^2}}}{2}}}{\text{ and v = }}\left( {1 - {x^2}} \right)\], substituting the values:
$f''\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\dfrac{{d\left( {1 - {x^2}} \right)}}{{dx}} + \left( {1 - {x^2}} \right)\dfrac{{d\left( {{e^{\dfrac{{ - {x^2}}}{2}}}} \right)}}{{dx}}$
Since, we know that \[\dfrac{{d\left( {{e^{{x^n}}}} \right)}}{{dx}} = n{x^{n - 1}}{e^{{x^n}}}\] and \[\dfrac{{d\left( {1 - {x^2}} \right)}}{{dx}} = \dfrac{{d1}}{{dx}} - \dfrac{{d{x^2}}}{{dx}} = 0 - 2x = - 2x\].
Substituting the values, we get:
\[f''(x) = {e^{\dfrac{{^{ - {x^2}}}}{2}}}( - 2x) + (1 - {x^2}){e^{\dfrac{{^{ - {x^2}}}}{2}}}\left( {\dfrac{{ - 2x}}{2}} \right)\]
Finding the value for critical points by substituting the value at $x = 1$:
\[
f''(1) = {e^{\dfrac{{^{ - {1^2}}}}{2}}}( - 2 \times 1) + (1 - {1^2}){e^{\dfrac{{^{ - {1^2}}}}{2}}}\left( {\dfrac{{ - 2 \times 1}}{2}} \right) \\
\Rightarrow f''(1) = - 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} + 0 \\
\Rightarrow f''(1) = - 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} < 0 \\
\]
Therefore \[x = 1\]is a point of maxima.
The critical value at \[x = - 1\]
\[
f''( - 1) = {e^{\dfrac{{^{{1^2}}}}{2}}}( - 2 \times - 1) + (1 - {\left( { - 1} \right)^2}){e^{\dfrac{{^{{1^2}}}}{2}}}\left( {\dfrac{{ - 2 \times - 1}}{2}} \right) \\
\Rightarrow f''( - 1) = 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} + 0 \\
\Rightarrow f''( - 1) = 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} > 0 \\
\]
\[f''(x) = f''( - 1) = {e^{\dfrac{{^{ - 1}}}{2}}}(2) > 0\]
Therefore, \[x = - 1\] is a point of minima.
Therefore, \[f(x) = \int\limits_0^x {{e^{\dfrac{{^{ - {x^2}}}}{2}}}} (1 - {t^2})dt\]is minimum at\[x = - 1\].
Hence, Option (2) is the correct answer.
Note:
As we know that to find the critical point, we need to find the first order derivative of a function and to find the maximum and minimum value, find the second order derivative of the function and substitute the critical points. If the value is less than zero, the condition will be maxima and if the value is more than zero, the condition would be minima.
Formula used:
\[\dfrac{{dx}}{{dx}} = 1\]
\[\dfrac{{d0}}{{dx}} = 0\]
\[\dfrac{{d\left( {{e^{{x^n}}}} \right)}}{{dx}} = n{x^{n - 1}}{e^{{x^n}}}\]
\[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
$\dfrac{{d\left( {u.v} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete answer:
We have $f\left( x \right) = \int\limits_0^x {{e^{\dfrac{{ - {x^2}}}{2}}}\left( {1 - {t^2}} \right)dt} $
Taking out the value ${e^{\dfrac{{ - {x^2}}}{2}}}$from the integration, and we get:
$f\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\int\limits_0^x {\left( {1 - {t^2}} \right)dt} $
Since, we know that for a function:
\[f\left( x \right) = \int\limits_{a\left( x \right)}^{b\left( x \right)} {g\left( x \right)dx} \]
On differentiating with integral we know that the value would be:
\[f'\left( x \right) = g\left( b \right)\dfrac{{d\left( b \right)}}{{dx}} - g\left( a \right)\dfrac{{d\left( a \right)}}{{dx}}\]
Comparing \[f\left( x \right) = \int\limits_{a\left( x \right)}^{b\left( x \right)} {g\left( x \right)dx} \] with $f\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\int\limits_0^x {\left( {1 - {t^2}} \right)dt} $ we get:
\[
a = 0 \\
b = x \\
g\left( x \right) = 1 - {t^2} \\
\]
Substituting the values, we get:
\[f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {g\left( x \right)\dfrac{{d\left( x \right)}}{{dx}} - g\left( 0 \right)\dfrac{{d\left( 0 \right)}}{{dx}}} \right]\]
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {\left( {1 - {x^2}} \right)\dfrac{{d\left( x \right)}}{{dx}} - \left( {1 - {0^2}} \right)\dfrac{{d\left( 0 \right)}}{{dx}}} \right]\]
As, we know that \[\dfrac{{dx}}{{dx}} = 1\] and \[\dfrac{{d0}}{{dx}} = 0\]
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {\left( {1 - {x^2}} \right)1 - \left( {1 - {0^2}} \right)0} \right]\]
Solving it, we get:
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {\left( {1 - {x^2}} \right) - 0} \right]\]
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left( {1 - {x^2}} \right)\]
To find the critical points:
Putting \[f'(x) = 0\],we get:
\[1 - {x^2} = 0\]
Adding both sides by \[{x^2}\]:
\[
1 - {x^2} + {x^2} = 0 + {x^2} \\
\Rightarrow 1 = {x^2} \\
\Rightarrow {x^2} = 1 \\
\]
Taking square root both the sides:
\[ \Rightarrow \sqrt {{x^2}} = \sqrt 1 \]
We get \[x = \pm 1\]
Since, we have two functions inside the given function, so using the product rule, we are differentiating \[f'(x)\] with respect to \[x\] we get:
As, we know that:
$\dfrac{{d\left( {u.v} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Considering \[u = {e^{\dfrac{{ - {x^2}}}{2}}}{\text{ and v = }}\left( {1 - {x^2}} \right)\], substituting the values:
$f''\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\dfrac{{d\left( {1 - {x^2}} \right)}}{{dx}} + \left( {1 - {x^2}} \right)\dfrac{{d\left( {{e^{\dfrac{{ - {x^2}}}{2}}}} \right)}}{{dx}}$
Since, we know that \[\dfrac{{d\left( {{e^{{x^n}}}} \right)}}{{dx}} = n{x^{n - 1}}{e^{{x^n}}}\] and \[\dfrac{{d\left( {1 - {x^2}} \right)}}{{dx}} = \dfrac{{d1}}{{dx}} - \dfrac{{d{x^2}}}{{dx}} = 0 - 2x = - 2x\].
Substituting the values, we get:
\[f''(x) = {e^{\dfrac{{^{ - {x^2}}}}{2}}}( - 2x) + (1 - {x^2}){e^{\dfrac{{^{ - {x^2}}}}{2}}}\left( {\dfrac{{ - 2x}}{2}} \right)\]
Finding the value for critical points by substituting the value at $x = 1$:
\[
f''(1) = {e^{\dfrac{{^{ - {1^2}}}}{2}}}( - 2 \times 1) + (1 - {1^2}){e^{\dfrac{{^{ - {1^2}}}}{2}}}\left( {\dfrac{{ - 2 \times 1}}{2}} \right) \\
\Rightarrow f''(1) = - 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} + 0 \\
\Rightarrow f''(1) = - 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} < 0 \\
\]
Therefore \[x = 1\]is a point of maxima.
The critical value at \[x = - 1\]
\[
f''( - 1) = {e^{\dfrac{{^{{1^2}}}}{2}}}( - 2 \times - 1) + (1 - {\left( { - 1} \right)^2}){e^{\dfrac{{^{{1^2}}}}{2}}}\left( {\dfrac{{ - 2 \times - 1}}{2}} \right) \\
\Rightarrow f''( - 1) = 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} + 0 \\
\Rightarrow f''( - 1) = 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} > 0 \\
\]
\[f''(x) = f''( - 1) = {e^{\dfrac{{^{ - 1}}}{2}}}(2) > 0\]
Therefore, \[x = - 1\] is a point of minima.
Therefore, \[f(x) = \int\limits_0^x {{e^{\dfrac{{^{ - {x^2}}}}{2}}}} (1 - {t^2})dt\]is minimum at\[x = - 1\].
Hence, Option (2) is the correct answer.
Note:
As we know that to find the critical point, we need to find the first order derivative of a function and to find the maximum and minimum value, find the second order derivative of the function and substitute the critical points. If the value is less than zero, the condition will be maxima and if the value is more than zero, the condition would be minima.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
At which age domestication of animals started A Neolithic class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Whales are warmblooded animals which live in cold seas class 11 biology CBSE

How does Amoeba obtain its food a Endocytosis b Exocytosis class 11 biology ICSE

How many quintals are there in one metric ton A 10 class 11 physics CBSE

10 examples of diffusion in everyday life
