
If $f\left( x \right) = \int\limits_0^x {{e^{\dfrac{{ - {x^2}}}{2}}}\left( {1 - {t^2}} \right)dt} $ minimum at \[x = \]
A) \[1\]
B) \[ - 1\]
C) \[2\]
D) \[ - 2\]
Answer
483.6k+ views
Hint: In order to solve for the minimum value at x, we need to know about integration and taking differentiation of the value under integration. For integration we know that, it is the reverse process of differentiation which is adding or summing of the parts. And for differentiation under integration, we would use the formula for a function \[f\left( x \right) = \int\limits_{a\left( x \right)}^{b\left( x \right)} {g\left( x \right)dx} \]which gives \[f'\left( x \right) = g\left( b \right)\dfrac{{d\left( b \right)}}{{dx}} - g\left( a \right)\dfrac{{d\left( a \right)}}{{dx}}\].
Formula used:
\[\dfrac{{dx}}{{dx}} = 1\]
\[\dfrac{{d0}}{{dx}} = 0\]
\[\dfrac{{d\left( {{e^{{x^n}}}} \right)}}{{dx}} = n{x^{n - 1}}{e^{{x^n}}}\]
\[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
$\dfrac{{d\left( {u.v} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete answer:
We have $f\left( x \right) = \int\limits_0^x {{e^{\dfrac{{ - {x^2}}}{2}}}\left( {1 - {t^2}} \right)dt} $
Taking out the value ${e^{\dfrac{{ - {x^2}}}{2}}}$from the integration, and we get:
$f\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\int\limits_0^x {\left( {1 - {t^2}} \right)dt} $
Since, we know that for a function:
\[f\left( x \right) = \int\limits_{a\left( x \right)}^{b\left( x \right)} {g\left( x \right)dx} \]
On differentiating with integral we know that the value would be:
\[f'\left( x \right) = g\left( b \right)\dfrac{{d\left( b \right)}}{{dx}} - g\left( a \right)\dfrac{{d\left( a \right)}}{{dx}}\]
Comparing \[f\left( x \right) = \int\limits_{a\left( x \right)}^{b\left( x \right)} {g\left( x \right)dx} \] with $f\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\int\limits_0^x {\left( {1 - {t^2}} \right)dt} $ we get:
\[
a = 0 \\
b = x \\
g\left( x \right) = 1 - {t^2} \\
\]
Substituting the values, we get:
\[f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {g\left( x \right)\dfrac{{d\left( x \right)}}{{dx}} - g\left( 0 \right)\dfrac{{d\left( 0 \right)}}{{dx}}} \right]\]
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {\left( {1 - {x^2}} \right)\dfrac{{d\left( x \right)}}{{dx}} - \left( {1 - {0^2}} \right)\dfrac{{d\left( 0 \right)}}{{dx}}} \right]\]
As, we know that \[\dfrac{{dx}}{{dx}} = 1\] and \[\dfrac{{d0}}{{dx}} = 0\]
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {\left( {1 - {x^2}} \right)1 - \left( {1 - {0^2}} \right)0} \right]\]
Solving it, we get:
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {\left( {1 - {x^2}} \right) - 0} \right]\]
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left( {1 - {x^2}} \right)\]
To find the critical points:
Putting \[f'(x) = 0\],we get:
\[1 - {x^2} = 0\]
Adding both sides by \[{x^2}\]:
\[
1 - {x^2} + {x^2} = 0 + {x^2} \\
\Rightarrow 1 = {x^2} \\
\Rightarrow {x^2} = 1 \\
\]
Taking square root both the sides:
\[ \Rightarrow \sqrt {{x^2}} = \sqrt 1 \]
We get \[x = \pm 1\]
Since, we have two functions inside the given function, so using the product rule, we are differentiating \[f'(x)\] with respect to \[x\] we get:
As, we know that:
$\dfrac{{d\left( {u.v} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Considering \[u = {e^{\dfrac{{ - {x^2}}}{2}}}{\text{ and v = }}\left( {1 - {x^2}} \right)\], substituting the values:
$f''\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\dfrac{{d\left( {1 - {x^2}} \right)}}{{dx}} + \left( {1 - {x^2}} \right)\dfrac{{d\left( {{e^{\dfrac{{ - {x^2}}}{2}}}} \right)}}{{dx}}$
Since, we know that \[\dfrac{{d\left( {{e^{{x^n}}}} \right)}}{{dx}} = n{x^{n - 1}}{e^{{x^n}}}\] and \[\dfrac{{d\left( {1 - {x^2}} \right)}}{{dx}} = \dfrac{{d1}}{{dx}} - \dfrac{{d{x^2}}}{{dx}} = 0 - 2x = - 2x\].
Substituting the values, we get:
\[f''(x) = {e^{\dfrac{{^{ - {x^2}}}}{2}}}( - 2x) + (1 - {x^2}){e^{\dfrac{{^{ - {x^2}}}}{2}}}\left( {\dfrac{{ - 2x}}{2}} \right)\]
Finding the value for critical points by substituting the value at $x = 1$:
\[
f''(1) = {e^{\dfrac{{^{ - {1^2}}}}{2}}}( - 2 \times 1) + (1 - {1^2}){e^{\dfrac{{^{ - {1^2}}}}{2}}}\left( {\dfrac{{ - 2 \times 1}}{2}} \right) \\
\Rightarrow f''(1) = - 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} + 0 \\
\Rightarrow f''(1) = - 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} < 0 \\
\]
Therefore \[x = 1\]is a point of maxima.
The critical value at \[x = - 1\]
\[
f''( - 1) = {e^{\dfrac{{^{{1^2}}}}{2}}}( - 2 \times - 1) + (1 - {\left( { - 1} \right)^2}){e^{\dfrac{{^{{1^2}}}}{2}}}\left( {\dfrac{{ - 2 \times - 1}}{2}} \right) \\
\Rightarrow f''( - 1) = 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} + 0 \\
\Rightarrow f''( - 1) = 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} > 0 \\
\]
\[f''(x) = f''( - 1) = {e^{\dfrac{{^{ - 1}}}{2}}}(2) > 0\]
Therefore, \[x = - 1\] is a point of minima.
Therefore, \[f(x) = \int\limits_0^x {{e^{\dfrac{{^{ - {x^2}}}}{2}}}} (1 - {t^2})dt\]is minimum at\[x = - 1\].
Hence, Option (2) is the correct answer.
Note:
As we know that to find the critical point, we need to find the first order derivative of a function and to find the maximum and minimum value, find the second order derivative of the function and substitute the critical points. If the value is less than zero, the condition will be maxima and if the value is more than zero, the condition would be minima.
Formula used:
\[\dfrac{{dx}}{{dx}} = 1\]
\[\dfrac{{d0}}{{dx}} = 0\]
\[\dfrac{{d\left( {{e^{{x^n}}}} \right)}}{{dx}} = n{x^{n - 1}}{e^{{x^n}}}\]
\[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
$\dfrac{{d\left( {u.v} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete answer:
We have $f\left( x \right) = \int\limits_0^x {{e^{\dfrac{{ - {x^2}}}{2}}}\left( {1 - {t^2}} \right)dt} $
Taking out the value ${e^{\dfrac{{ - {x^2}}}{2}}}$from the integration, and we get:
$f\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\int\limits_0^x {\left( {1 - {t^2}} \right)dt} $
Since, we know that for a function:
\[f\left( x \right) = \int\limits_{a\left( x \right)}^{b\left( x \right)} {g\left( x \right)dx} \]
On differentiating with integral we know that the value would be:
\[f'\left( x \right) = g\left( b \right)\dfrac{{d\left( b \right)}}{{dx}} - g\left( a \right)\dfrac{{d\left( a \right)}}{{dx}}\]
Comparing \[f\left( x \right) = \int\limits_{a\left( x \right)}^{b\left( x \right)} {g\left( x \right)dx} \] with $f\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\int\limits_0^x {\left( {1 - {t^2}} \right)dt} $ we get:
\[
a = 0 \\
b = x \\
g\left( x \right) = 1 - {t^2} \\
\]
Substituting the values, we get:
\[f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {g\left( x \right)\dfrac{{d\left( x \right)}}{{dx}} - g\left( 0 \right)\dfrac{{d\left( 0 \right)}}{{dx}}} \right]\]
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {\left( {1 - {x^2}} \right)\dfrac{{d\left( x \right)}}{{dx}} - \left( {1 - {0^2}} \right)\dfrac{{d\left( 0 \right)}}{{dx}}} \right]\]
As, we know that \[\dfrac{{dx}}{{dx}} = 1\] and \[\dfrac{{d0}}{{dx}} = 0\]
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {\left( {1 - {x^2}} \right)1 - \left( {1 - {0^2}} \right)0} \right]\]
Solving it, we get:
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left[ {\left( {1 - {x^2}} \right) - 0} \right]\]
\[ \Rightarrow f'\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\left( {1 - {x^2}} \right)\]
To find the critical points:
Putting \[f'(x) = 0\],we get:
\[1 - {x^2} = 0\]
Adding both sides by \[{x^2}\]:
\[
1 - {x^2} + {x^2} = 0 + {x^2} \\
\Rightarrow 1 = {x^2} \\
\Rightarrow {x^2} = 1 \\
\]
Taking square root both the sides:
\[ \Rightarrow \sqrt {{x^2}} = \sqrt 1 \]
We get \[x = \pm 1\]
Since, we have two functions inside the given function, so using the product rule, we are differentiating \[f'(x)\] with respect to \[x\] we get:
As, we know that:
$\dfrac{{d\left( {u.v} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Considering \[u = {e^{\dfrac{{ - {x^2}}}{2}}}{\text{ and v = }}\left( {1 - {x^2}} \right)\], substituting the values:
$f''\left( x \right) = {e^{\dfrac{{ - {x^2}}}{2}}}\dfrac{{d\left( {1 - {x^2}} \right)}}{{dx}} + \left( {1 - {x^2}} \right)\dfrac{{d\left( {{e^{\dfrac{{ - {x^2}}}{2}}}} \right)}}{{dx}}$
Since, we know that \[\dfrac{{d\left( {{e^{{x^n}}}} \right)}}{{dx}} = n{x^{n - 1}}{e^{{x^n}}}\] and \[\dfrac{{d\left( {1 - {x^2}} \right)}}{{dx}} = \dfrac{{d1}}{{dx}} - \dfrac{{d{x^2}}}{{dx}} = 0 - 2x = - 2x\].
Substituting the values, we get:
\[f''(x) = {e^{\dfrac{{^{ - {x^2}}}}{2}}}( - 2x) + (1 - {x^2}){e^{\dfrac{{^{ - {x^2}}}}{2}}}\left( {\dfrac{{ - 2x}}{2}} \right)\]
Finding the value for critical points by substituting the value at $x = 1$:
\[
f''(1) = {e^{\dfrac{{^{ - {1^2}}}}{2}}}( - 2 \times 1) + (1 - {1^2}){e^{\dfrac{{^{ - {1^2}}}}{2}}}\left( {\dfrac{{ - 2 \times 1}}{2}} \right) \\
\Rightarrow f''(1) = - 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} + 0 \\
\Rightarrow f''(1) = - 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} < 0 \\
\]
Therefore \[x = 1\]is a point of maxima.
The critical value at \[x = - 1\]
\[
f''( - 1) = {e^{\dfrac{{^{{1^2}}}}{2}}}( - 2 \times - 1) + (1 - {\left( { - 1} \right)^2}){e^{\dfrac{{^{{1^2}}}}{2}}}\left( {\dfrac{{ - 2 \times - 1}}{2}} \right) \\
\Rightarrow f''( - 1) = 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} + 0 \\
\Rightarrow f''( - 1) = 2{e^{\dfrac{{^{ - {1^2}}}}{2}}} > 0 \\
\]
\[f''(x) = f''( - 1) = {e^{\dfrac{{^{ - 1}}}{2}}}(2) > 0\]
Therefore, \[x = - 1\] is a point of minima.
Therefore, \[f(x) = \int\limits_0^x {{e^{\dfrac{{^{ - {x^2}}}}{2}}}} (1 - {t^2})dt\]is minimum at\[x = - 1\].
Hence, Option (2) is the correct answer.
Note:
As we know that to find the critical point, we need to find the first order derivative of a function and to find the maximum and minimum value, find the second order derivative of the function and substitute the critical points. If the value is less than zero, the condition will be maxima and if the value is more than zero, the condition would be minima.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

