
If $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$ then which of the following is not true
A. Both $g\left( x \right)$ and $h\left( x \right)$ are divisible by $x + 1$
B. $g\left( x \right)$ is divisible by $x + 1$
C. $h\left( x \right)$ is divisible by $x + 1$
D. The statement (A) is not true
Answer
512.4k+ views
Hint: First, we shall analyze the given information. It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$is divisible by ${x^2} - x + 1$.
Here, we need to calculate the roots ${x^2} - x + 1 = 0$.
And we shall apply the roots in place of $x$ in the given equation.
Formula to be used:
The quadratic formula of the form $a{x^2} + bx + c = 0$ is as follows.
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given equation is $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$.
It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$.
We shall calculate the roots of ${x^2} - x + 1 = 0$
Here,
$a = 1$,
$b = - 1$,
$c = 1$
Applying these values in the quadratic formula, we have
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}}$
$ \Rightarrow x = \dfrac{{1 \pm \sqrt {1 - 4} }}{2}$
$ \Rightarrow x = \dfrac{{1 \pm \sqrt { - 3} }}{2}$
$ \Rightarrow x = \dfrac{{1 \pm i\sqrt 3 }}{2}$
Where $i$ is known as imaginary number.
We know that the value of the roots $\omega $ and ${\omega ^2}$ are$\dfrac{{ - 1 \pm i\sqrt 3 }}{2}$ .
Here, we got the roots as $x = \dfrac{{1 \pm i\sqrt 3 }}{2}$ which can also be written as $ - \omega $ and $ - {\omega ^2}$
Hence, the roots of ${x^2} - x + 1 = 0$ are $ - \omega $ and $ - {\omega ^2}$.
It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$.
Therefore, $ - \omega $ and $ - {\omega ^2}$are the factors of $f(x)$
So, we need to replace $x$ by $ - \omega $ and $ - {\omega ^2}$ in the given equation.
$f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right)$
$ \Rightarrow f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right) = 0$
We know that the value of ${\omega ^3} = 1$
\[ \Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0\] ……….$\left( 1 \right)$
Similarly,
$f\left( { - {\omega ^2}} \right) = g\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right) - {\omega ^2}h\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right)$
$ \Rightarrow f\left( { - {\omega ^2}} \right) = g\left( { - {\omega ^6}} \right) - {\omega ^2}h\left( { - {\omega ^6}} \right) = 0$
We know that the value of ${\omega ^6} = 1$
$ \Rightarrow g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0$ ……………..$\left( 2 \right)$
Now, we shall add $\left( 1 \right)$and $\left( 2 \right)$.
\[ \Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) + g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0\]
\[ \Rightarrow 2g\left( { - 1} \right) - \left( {\omega + {\omega ^2}} \right)h\left( { - 1} \right) = 0\]
We know that $\omega + {\omega ^2} = - 1$ $(1 + \omega + {\omega ^2} = 0)$
\[ \Rightarrow 2g\left( { - 1} \right) - \left( { - 1} \right)h\left( { - 1} \right) = 0\]
\[ \Rightarrow 2g\left( { - 1} \right) + h\left( { - 1} \right) = 0\]
\[ \Rightarrow h\left( { - 1} \right) = - 2g\left( { - 1} \right)\] …………..$\left( 3 \right)$
We need to substitute the above result in $\left( 1 \right)$
\[
g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0 \\
\Rightarrow g\left( { - 1} \right) - \omega \times - 2g\left( { - 1} \right) = 0 \\
\]
\[ \Rightarrow g\left( { - 1} \right) + 2\omega g\left( { - 1} \right) = 0\]
\[ \Rightarrow \left( {1 + 2\omega } \right)g\left( { - 1} \right) = 0\]
\[ \Rightarrow g\left( { - 1} \right) = 0\]
Therefore, $\left( {x + 1} \right)$ is a factor of $g\left( x \right)$ . Hence, option B is correct.
Now, we shall substitute \[g\left( { - 1} \right) = 0\] in $\left( 3 \right)$
\[
h\left( { - 1} \right) = - 2g\left( { - 1} \right) \\
\Rightarrow h\left( { - 1} \right) = - 2 \times 0 \\
\]
\[ \Rightarrow h\left( { - 1} \right) = 0\]
Therefore, $\left( {x + 1} \right)$ is a factor of $h\left( x \right)$ . Hence, option C is true.
Also, option A is true.
So, the correct answer is “Option D”.
Note: We know that the value of the roots $\omega $ and ${\omega ^2}$ are $\dfrac{{ - 1 \pm i\sqrt 3 }}{2}$ . The sum of the cube root of unity is zero (i.e.) $1 + \omega + {\omega ^2} = 0$. Also, it is known that ${\omega ^3} = 1$. Generally, we express the square root of a negative number in terms of an imaginary number. So, here we replaced $i = - 1$
Here, we need to calculate the roots ${x^2} - x + 1 = 0$.
And we shall apply the roots in place of $x$ in the given equation.
Formula to be used:
The quadratic formula of the form $a{x^2} + bx + c = 0$ is as follows.
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given equation is $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$.
It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$.
We shall calculate the roots of ${x^2} - x + 1 = 0$
Here,
$a = 1$,
$b = - 1$,
$c = 1$
Applying these values in the quadratic formula, we have
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}}$
$ \Rightarrow x = \dfrac{{1 \pm \sqrt {1 - 4} }}{2}$
$ \Rightarrow x = \dfrac{{1 \pm \sqrt { - 3} }}{2}$
$ \Rightarrow x = \dfrac{{1 \pm i\sqrt 3 }}{2}$
Where $i$ is known as imaginary number.
We know that the value of the roots $\omega $ and ${\omega ^2}$ are$\dfrac{{ - 1 \pm i\sqrt 3 }}{2}$ .
Here, we got the roots as $x = \dfrac{{1 \pm i\sqrt 3 }}{2}$ which can also be written as $ - \omega $ and $ - {\omega ^2}$
Hence, the roots of ${x^2} - x + 1 = 0$ are $ - \omega $ and $ - {\omega ^2}$.
It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$.
Therefore, $ - \omega $ and $ - {\omega ^2}$are the factors of $f(x)$
So, we need to replace $x$ by $ - \omega $ and $ - {\omega ^2}$ in the given equation.
$f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right)$
$ \Rightarrow f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right) = 0$
We know that the value of ${\omega ^3} = 1$
\[ \Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0\] ……….$\left( 1 \right)$
Similarly,
$f\left( { - {\omega ^2}} \right) = g\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right) - {\omega ^2}h\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right)$
$ \Rightarrow f\left( { - {\omega ^2}} \right) = g\left( { - {\omega ^6}} \right) - {\omega ^2}h\left( { - {\omega ^6}} \right) = 0$
We know that the value of ${\omega ^6} = 1$
$ \Rightarrow g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0$ ……………..$\left( 2 \right)$
Now, we shall add $\left( 1 \right)$and $\left( 2 \right)$.
\[ \Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) + g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0\]
\[ \Rightarrow 2g\left( { - 1} \right) - \left( {\omega + {\omega ^2}} \right)h\left( { - 1} \right) = 0\]
We know that $\omega + {\omega ^2} = - 1$ $(1 + \omega + {\omega ^2} = 0)$
\[ \Rightarrow 2g\left( { - 1} \right) - \left( { - 1} \right)h\left( { - 1} \right) = 0\]
\[ \Rightarrow 2g\left( { - 1} \right) + h\left( { - 1} \right) = 0\]
\[ \Rightarrow h\left( { - 1} \right) = - 2g\left( { - 1} \right)\] …………..$\left( 3 \right)$
We need to substitute the above result in $\left( 1 \right)$
\[
g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0 \\
\Rightarrow g\left( { - 1} \right) - \omega \times - 2g\left( { - 1} \right) = 0 \\
\]
\[ \Rightarrow g\left( { - 1} \right) + 2\omega g\left( { - 1} \right) = 0\]
\[ \Rightarrow \left( {1 + 2\omega } \right)g\left( { - 1} \right) = 0\]
\[ \Rightarrow g\left( { - 1} \right) = 0\]
Therefore, $\left( {x + 1} \right)$ is a factor of $g\left( x \right)$ . Hence, option B is correct.
Now, we shall substitute \[g\left( { - 1} \right) = 0\] in $\left( 3 \right)$
\[
h\left( { - 1} \right) = - 2g\left( { - 1} \right) \\
\Rightarrow h\left( { - 1} \right) = - 2 \times 0 \\
\]
\[ \Rightarrow h\left( { - 1} \right) = 0\]
Therefore, $\left( {x + 1} \right)$ is a factor of $h\left( x \right)$ . Hence, option C is true.
Also, option A is true.
So, the correct answer is “Option D”.
Note: We know that the value of the roots $\omega $ and ${\omega ^2}$ are $\dfrac{{ - 1 \pm i\sqrt 3 }}{2}$ . The sum of the cube root of unity is zero (i.e.) $1 + \omega + {\omega ^2} = 0$. Also, it is known that ${\omega ^3} = 1$. Generally, we express the square root of a negative number in terms of an imaginary number. So, here we replaced $i = - 1$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

