
If $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$ then which of the following is not true
A. Both $g\left( x \right)$ and $h\left( x \right)$ are divisible by $x + 1$
B. $g\left( x \right)$ is divisible by $x + 1$
C. $h\left( x \right)$ is divisible by $x + 1$
D. The statement (A) is not true
Answer
416.4k+ views
Hint: First, we shall analyze the given information. It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$is divisible by ${x^2} - x + 1$.
Here, we need to calculate the roots ${x^2} - x + 1 = 0$.
And we shall apply the roots in place of $x$ in the given equation.
Formula to be used:
The quadratic formula of the form $a{x^2} + bx + c = 0$ is as follows.
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given equation is $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$.
It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$.
We shall calculate the roots of ${x^2} - x + 1 = 0$
Here,
$a = 1$,
$b = - 1$,
$c = 1$
Applying these values in the quadratic formula, we have
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}}$
$ \Rightarrow x = \dfrac{{1 \pm \sqrt {1 - 4} }}{2}$
$ \Rightarrow x = \dfrac{{1 \pm \sqrt { - 3} }}{2}$
$ \Rightarrow x = \dfrac{{1 \pm i\sqrt 3 }}{2}$
Where $i$ is known as imaginary number.
We know that the value of the roots $\omega $ and ${\omega ^2}$ are$\dfrac{{ - 1 \pm i\sqrt 3 }}{2}$ .
Here, we got the roots as $x = \dfrac{{1 \pm i\sqrt 3 }}{2}$ which can also be written as $ - \omega $ and $ - {\omega ^2}$
Hence, the roots of ${x^2} - x + 1 = 0$ are $ - \omega $ and $ - {\omega ^2}$.
It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$.
Therefore, $ - \omega $ and $ - {\omega ^2}$are the factors of $f(x)$
So, we need to replace $x$ by $ - \omega $ and $ - {\omega ^2}$ in the given equation.
$f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right)$
$ \Rightarrow f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right) = 0$
We know that the value of ${\omega ^3} = 1$
\[ \Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0\] ……….$\left( 1 \right)$
Similarly,
$f\left( { - {\omega ^2}} \right) = g\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right) - {\omega ^2}h\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right)$
$ \Rightarrow f\left( { - {\omega ^2}} \right) = g\left( { - {\omega ^6}} \right) - {\omega ^2}h\left( { - {\omega ^6}} \right) = 0$
We know that the value of ${\omega ^6} = 1$
$ \Rightarrow g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0$ ……………..$\left( 2 \right)$
Now, we shall add $\left( 1 \right)$and $\left( 2 \right)$.
\[ \Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) + g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0\]
\[ \Rightarrow 2g\left( { - 1} \right) - \left( {\omega + {\omega ^2}} \right)h\left( { - 1} \right) = 0\]
We know that $\omega + {\omega ^2} = - 1$ $(1 + \omega + {\omega ^2} = 0)$
\[ \Rightarrow 2g\left( { - 1} \right) - \left( { - 1} \right)h\left( { - 1} \right) = 0\]
\[ \Rightarrow 2g\left( { - 1} \right) + h\left( { - 1} \right) = 0\]
\[ \Rightarrow h\left( { - 1} \right) = - 2g\left( { - 1} \right)\] …………..$\left( 3 \right)$
We need to substitute the above result in $\left( 1 \right)$
\[
g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0 \\
\Rightarrow g\left( { - 1} \right) - \omega \times - 2g\left( { - 1} \right) = 0 \\
\]
\[ \Rightarrow g\left( { - 1} \right) + 2\omega g\left( { - 1} \right) = 0\]
\[ \Rightarrow \left( {1 + 2\omega } \right)g\left( { - 1} \right) = 0\]
\[ \Rightarrow g\left( { - 1} \right) = 0\]
Therefore, $\left( {x + 1} \right)$ is a factor of $g\left( x \right)$ . Hence, option B is correct.
Now, we shall substitute \[g\left( { - 1} \right) = 0\] in $\left( 3 \right)$
\[
h\left( { - 1} \right) = - 2g\left( { - 1} \right) \\
\Rightarrow h\left( { - 1} \right) = - 2 \times 0 \\
\]
\[ \Rightarrow h\left( { - 1} \right) = 0\]
Therefore, $\left( {x + 1} \right)$ is a factor of $h\left( x \right)$ . Hence, option C is true.
Also, option A is true.
So, the correct answer is “Option D”.
Note: We know that the value of the roots $\omega $ and ${\omega ^2}$ are $\dfrac{{ - 1 \pm i\sqrt 3 }}{2}$ . The sum of the cube root of unity is zero (i.e.) $1 + \omega + {\omega ^2} = 0$. Also, it is known that ${\omega ^3} = 1$. Generally, we express the square root of a negative number in terms of an imaginary number. So, here we replaced $i = - 1$
Here, we need to calculate the roots ${x^2} - x + 1 = 0$.
And we shall apply the roots in place of $x$ in the given equation.
Formula to be used:
The quadratic formula of the form $a{x^2} + bx + c = 0$ is as follows.
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given equation is $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$.
It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$.
We shall calculate the roots of ${x^2} - x + 1 = 0$
Here,
$a = 1$,
$b = - 1$,
$c = 1$
Applying these values in the quadratic formula, we have
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}}$
$ \Rightarrow x = \dfrac{{1 \pm \sqrt {1 - 4} }}{2}$
$ \Rightarrow x = \dfrac{{1 \pm \sqrt { - 3} }}{2}$
$ \Rightarrow x = \dfrac{{1 \pm i\sqrt 3 }}{2}$
Where $i$ is known as imaginary number.
We know that the value of the roots $\omega $ and ${\omega ^2}$ are$\dfrac{{ - 1 \pm i\sqrt 3 }}{2}$ .
Here, we got the roots as $x = \dfrac{{1 \pm i\sqrt 3 }}{2}$ which can also be written as $ - \omega $ and $ - {\omega ^2}$
Hence, the roots of ${x^2} - x + 1 = 0$ are $ - \omega $ and $ - {\omega ^2}$.
It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$.
Therefore, $ - \omega $ and $ - {\omega ^2}$are the factors of $f(x)$
So, we need to replace $x$ by $ - \omega $ and $ - {\omega ^2}$ in the given equation.
$f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right)$
$ \Rightarrow f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right) = 0$
We know that the value of ${\omega ^3} = 1$
\[ \Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0\] ……….$\left( 1 \right)$
Similarly,
$f\left( { - {\omega ^2}} \right) = g\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right) - {\omega ^2}h\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right)$
$ \Rightarrow f\left( { - {\omega ^2}} \right) = g\left( { - {\omega ^6}} \right) - {\omega ^2}h\left( { - {\omega ^6}} \right) = 0$
We know that the value of ${\omega ^6} = 1$
$ \Rightarrow g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0$ ……………..$\left( 2 \right)$
Now, we shall add $\left( 1 \right)$and $\left( 2 \right)$.
\[ \Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) + g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0\]
\[ \Rightarrow 2g\left( { - 1} \right) - \left( {\omega + {\omega ^2}} \right)h\left( { - 1} \right) = 0\]
We know that $\omega + {\omega ^2} = - 1$ $(1 + \omega + {\omega ^2} = 0)$
\[ \Rightarrow 2g\left( { - 1} \right) - \left( { - 1} \right)h\left( { - 1} \right) = 0\]
\[ \Rightarrow 2g\left( { - 1} \right) + h\left( { - 1} \right) = 0\]
\[ \Rightarrow h\left( { - 1} \right) = - 2g\left( { - 1} \right)\] …………..$\left( 3 \right)$
We need to substitute the above result in $\left( 1 \right)$
\[
g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0 \\
\Rightarrow g\left( { - 1} \right) - \omega \times - 2g\left( { - 1} \right) = 0 \\
\]
\[ \Rightarrow g\left( { - 1} \right) + 2\omega g\left( { - 1} \right) = 0\]
\[ \Rightarrow \left( {1 + 2\omega } \right)g\left( { - 1} \right) = 0\]
\[ \Rightarrow g\left( { - 1} \right) = 0\]
Therefore, $\left( {x + 1} \right)$ is a factor of $g\left( x \right)$ . Hence, option B is correct.
Now, we shall substitute \[g\left( { - 1} \right) = 0\] in $\left( 3 \right)$
\[
h\left( { - 1} \right) = - 2g\left( { - 1} \right) \\
\Rightarrow h\left( { - 1} \right) = - 2 \times 0 \\
\]
\[ \Rightarrow h\left( { - 1} \right) = 0\]
Therefore, $\left( {x + 1} \right)$ is a factor of $h\left( x \right)$ . Hence, option C is true.
Also, option A is true.
So, the correct answer is “Option D”.
Note: We know that the value of the roots $\omega $ and ${\omega ^2}$ are $\dfrac{{ - 1 \pm i\sqrt 3 }}{2}$ . The sum of the cube root of unity is zero (i.e.) $1 + \omega + {\omega ^2} = 0$. Also, it is known that ${\omega ^3} = 1$. Generally, we express the square root of a negative number in terms of an imaginary number. So, here we replaced $i = - 1$
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
