
If $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$ then which of the following is not true
A. Both $g\left( x \right)$ and $h\left( x \right)$ are divisible by $x + 1$
B. $g\left( x \right)$ is divisible by $x + 1$
C. $h\left( x \right)$ is divisible by $x + 1$
D. The statement (A) is not true
Answer
498.6k+ views
Hint: First, we shall analyze the given information. It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$is divisible by ${x^2} - x + 1$.
Here, we need to calculate the roots ${x^2} - x + 1 = 0$.
And we shall apply the roots in place of $x$ in the given equation.
Formula to be used:
The quadratic formula of the form $a{x^2} + bx + c = 0$ is as follows.
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given equation is $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$.
It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$.
We shall calculate the roots of ${x^2} - x + 1 = 0$
Here,
$a = 1$,
$b = - 1$,
$c = 1$
Applying these values in the quadratic formula, we have
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}}$
$ \Rightarrow x = \dfrac{{1 \pm \sqrt {1 - 4} }}{2}$
$ \Rightarrow x = \dfrac{{1 \pm \sqrt { - 3} }}{2}$
$ \Rightarrow x = \dfrac{{1 \pm i\sqrt 3 }}{2}$
Where $i$ is known as imaginary number.
We know that the value of the roots $\omega $ and ${\omega ^2}$ are$\dfrac{{ - 1 \pm i\sqrt 3 }}{2}$ .
Here, we got the roots as $x = \dfrac{{1 \pm i\sqrt 3 }}{2}$ which can also be written as $ - \omega $ and $ - {\omega ^2}$
Hence, the roots of ${x^2} - x + 1 = 0$ are $ - \omega $ and $ - {\omega ^2}$.
It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$.
Therefore, $ - \omega $ and $ - {\omega ^2}$are the factors of $f(x)$
So, we need to replace $x$ by $ - \omega $ and $ - {\omega ^2}$ in the given equation.
$f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right)$
$ \Rightarrow f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right) = 0$
We know that the value of ${\omega ^3} = 1$
\[ \Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0\] ……….$\left( 1 \right)$
Similarly,
$f\left( { - {\omega ^2}} \right) = g\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right) - {\omega ^2}h\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right)$
$ \Rightarrow f\left( { - {\omega ^2}} \right) = g\left( { - {\omega ^6}} \right) - {\omega ^2}h\left( { - {\omega ^6}} \right) = 0$
We know that the value of ${\omega ^6} = 1$
$ \Rightarrow g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0$ ……………..$\left( 2 \right)$
Now, we shall add $\left( 1 \right)$and $\left( 2 \right)$.
\[ \Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) + g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0\]
\[ \Rightarrow 2g\left( { - 1} \right) - \left( {\omega + {\omega ^2}} \right)h\left( { - 1} \right) = 0\]
We know that $\omega + {\omega ^2} = - 1$ $(1 + \omega + {\omega ^2} = 0)$
\[ \Rightarrow 2g\left( { - 1} \right) - \left( { - 1} \right)h\left( { - 1} \right) = 0\]
\[ \Rightarrow 2g\left( { - 1} \right) + h\left( { - 1} \right) = 0\]
\[ \Rightarrow h\left( { - 1} \right) = - 2g\left( { - 1} \right)\] …………..$\left( 3 \right)$
We need to substitute the above result in $\left( 1 \right)$
\[
g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0 \\
\Rightarrow g\left( { - 1} \right) - \omega \times - 2g\left( { - 1} \right) = 0 \\
\]
\[ \Rightarrow g\left( { - 1} \right) + 2\omega g\left( { - 1} \right) = 0\]
\[ \Rightarrow \left( {1 + 2\omega } \right)g\left( { - 1} \right) = 0\]
\[ \Rightarrow g\left( { - 1} \right) = 0\]
Therefore, $\left( {x + 1} \right)$ is a factor of $g\left( x \right)$ . Hence, option B is correct.
Now, we shall substitute \[g\left( { - 1} \right) = 0\] in $\left( 3 \right)$
\[
h\left( { - 1} \right) = - 2g\left( { - 1} \right) \\
\Rightarrow h\left( { - 1} \right) = - 2 \times 0 \\
\]
\[ \Rightarrow h\left( { - 1} \right) = 0\]
Therefore, $\left( {x + 1} \right)$ is a factor of $h\left( x \right)$ . Hence, option C is true.
Also, option A is true.
So, the correct answer is “Option D”.
Note: We know that the value of the roots $\omega $ and ${\omega ^2}$ are $\dfrac{{ - 1 \pm i\sqrt 3 }}{2}$ . The sum of the cube root of unity is zero (i.e.) $1 + \omega + {\omega ^2} = 0$. Also, it is known that ${\omega ^3} = 1$. Generally, we express the square root of a negative number in terms of an imaginary number. So, here we replaced $i = - 1$
Here, we need to calculate the roots ${x^2} - x + 1 = 0$.
And we shall apply the roots in place of $x$ in the given equation.
Formula to be used:
The quadratic formula of the form $a{x^2} + bx + c = 0$ is as follows.
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given equation is $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$.
It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$.
We shall calculate the roots of ${x^2} - x + 1 = 0$
Here,
$a = 1$,
$b = - 1$,
$c = 1$
Applying these values in the quadratic formula, we have
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}}$
$ \Rightarrow x = \dfrac{{1 \pm \sqrt {1 - 4} }}{2}$
$ \Rightarrow x = \dfrac{{1 \pm \sqrt { - 3} }}{2}$
$ \Rightarrow x = \dfrac{{1 \pm i\sqrt 3 }}{2}$
Where $i$ is known as imaginary number.
We know that the value of the roots $\omega $ and ${\omega ^2}$ are$\dfrac{{ - 1 \pm i\sqrt 3 }}{2}$ .
Here, we got the roots as $x = \dfrac{{1 \pm i\sqrt 3 }}{2}$ which can also be written as $ - \omega $ and $ - {\omega ^2}$
Hence, the roots of ${x^2} - x + 1 = 0$ are $ - \omega $ and $ - {\omega ^2}$.
It is given that the given equation $f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)$ is divisible by ${x^2} - x + 1$.
Therefore, $ - \omega $ and $ - {\omega ^2}$are the factors of $f(x)$
So, we need to replace $x$ by $ - \omega $ and $ - {\omega ^2}$ in the given equation.
$f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right)$
$ \Rightarrow f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right) = 0$
We know that the value of ${\omega ^3} = 1$
\[ \Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0\] ……….$\left( 1 \right)$
Similarly,
$f\left( { - {\omega ^2}} \right) = g\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right) - {\omega ^2}h\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right)$
$ \Rightarrow f\left( { - {\omega ^2}} \right) = g\left( { - {\omega ^6}} \right) - {\omega ^2}h\left( { - {\omega ^6}} \right) = 0$
We know that the value of ${\omega ^6} = 1$
$ \Rightarrow g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0$ ……………..$\left( 2 \right)$
Now, we shall add $\left( 1 \right)$and $\left( 2 \right)$.
\[ \Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) + g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0\]
\[ \Rightarrow 2g\left( { - 1} \right) - \left( {\omega + {\omega ^2}} \right)h\left( { - 1} \right) = 0\]
We know that $\omega + {\omega ^2} = - 1$ $(1 + \omega + {\omega ^2} = 0)$
\[ \Rightarrow 2g\left( { - 1} \right) - \left( { - 1} \right)h\left( { - 1} \right) = 0\]
\[ \Rightarrow 2g\left( { - 1} \right) + h\left( { - 1} \right) = 0\]
\[ \Rightarrow h\left( { - 1} \right) = - 2g\left( { - 1} \right)\] …………..$\left( 3 \right)$
We need to substitute the above result in $\left( 1 \right)$
\[
g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0 \\
\Rightarrow g\left( { - 1} \right) - \omega \times - 2g\left( { - 1} \right) = 0 \\
\]
\[ \Rightarrow g\left( { - 1} \right) + 2\omega g\left( { - 1} \right) = 0\]
\[ \Rightarrow \left( {1 + 2\omega } \right)g\left( { - 1} \right) = 0\]
\[ \Rightarrow g\left( { - 1} \right) = 0\]
Therefore, $\left( {x + 1} \right)$ is a factor of $g\left( x \right)$ . Hence, option B is correct.
Now, we shall substitute \[g\left( { - 1} \right) = 0\] in $\left( 3 \right)$
\[
h\left( { - 1} \right) = - 2g\left( { - 1} \right) \\
\Rightarrow h\left( { - 1} \right) = - 2 \times 0 \\
\]
\[ \Rightarrow h\left( { - 1} \right) = 0\]
Therefore, $\left( {x + 1} \right)$ is a factor of $h\left( x \right)$ . Hence, option C is true.
Also, option A is true.
So, the correct answer is “Option D”.
Note: We know that the value of the roots $\omega $ and ${\omega ^2}$ are $\dfrac{{ - 1 \pm i\sqrt 3 }}{2}$ . The sum of the cube root of unity is zero (i.e.) $1 + \omega + {\omega ^2} = 0$. Also, it is known that ${\omega ^3} = 1$. Generally, we express the square root of a negative number in terms of an imaginary number. So, here we replaced $i = - 1$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

