Answer
Verified
429.9k+ views
Hint: In this type of problem of functions firstly find the value of internal function $f\left( 2 \right)$ by putting the $x = 2$ in the given equation then put the value obtained for $f\left( 2 \right)$ in place of $x$ in the given equation of $f\left( x \right)$, It will give the value of the function $f\left( {f\left( 2 \right)} \right)$.
Complete step by step answer:
Here, The given function is $f\left( x \right) = \dfrac{{2x + 1}}{{3x - 2}}$. This is an identity function.
We have to find the value of $f\left( {f\left( 2 \right)} \right)$. If we compare this function with the function $f\left( x \right)$ we can say that to find $f\left( {f\left( 2 \right)} \right)$ we replace $x$ by value of $f\left( 2 \right)$ in the given function.
So, firstly find the value of $f\left( 2 \right)$
By, Putting the value $x = 2$ in the given equation we get the value of $f\left( 2 \right)$ as
$f\left( 2 \right) = \dfrac{{2 \times 2 + 1}}{{3 \times 2 - 2}}$
$ \Rightarrow f\left( 2 \right) = \dfrac{{4 + 1}}{{6 - 2}}$
$\therefore f\left( 2 \right) = \dfrac{5}{4}$
To find the value of $f\left( {f\left( 2 \right)} \right)$ , we should replace the $x$ of given function by $f\left( 2 \right)$.
It gives $f\left( {f\left( 2 \right)} \right) = \dfrac{{2f\left( 2 \right) + 1}}{{3f\left( 2 \right) - 2}}$
Above, we get $f\left( 2 \right)$ is equal to $\dfrac{5}{4}$ , put the value of $x = f\left( 2 \right)$ in the given function $f\left( x \right)$
Then, put $f\left( 2 \right) = \dfrac{5}{4}$ in the above equation.
This implies
$ \Rightarrow f\left( {\dfrac{5}{4}} \right) = \dfrac{{\dfrac{{10 + 4}}{4}}}{{\dfrac{{15 - 8}}{4}}}$
$ \Rightarrow f\left( {\dfrac{5}{4}} \right) = \dfrac{{14}}{7}$
$\therefore f\left( {\dfrac{5}{4}} \right) = 2$
Thus, the required value of the function $f\left( {f\left( 2 \right)} \right) = 2$
Hence, option D is the correct option.
Note:
The given function $f\left( {f\left( x \right)} \right)$ is an identity function. We can verify it by putting $x = y$ in the given function. If a function is an identity function then its value will remain the same as that of the variable of that function.
Proof:Put in the equation $$f\left( x \right) = \dfrac{{2x + 1}}{{3x - 2}}$$
$x = y$, Then, we get $$f\left( y \right) = \dfrac{{2y + 1}}{{3y - 2}}$$
$f\left( {f\left( y \right)} \right) = \dfrac{{2f\left( y \right) + 1}}{{3f\left( y \right) - 2}}$
And then the value of
$\eqalign{
& \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{2\left( {\dfrac{{2y + 1}}{{3y - 2}}} \right) + 1}}{{3\left( {\dfrac{{2y + 1}}{{3y - 2}}} \right) - 2}} \cr
& \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{\dfrac{{4y + 2 + 3y - 2}}{{3y - 2}}}}{{\dfrac{{6y + 3 - 6y + 4}}{{3y - 2}}}} \cr
& \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{7y}}{7} \cr
& \Rightarrow f\left( {f\left( y \right)} \right) = y \cr} $
This derivation shows that this function is an identity function so the value of $f\left( {f\left( x \right)} \right)$ is the same as the value of $x$.
Complete step by step answer:
Here, The given function is $f\left( x \right) = \dfrac{{2x + 1}}{{3x - 2}}$. This is an identity function.
We have to find the value of $f\left( {f\left( 2 \right)} \right)$. If we compare this function with the function $f\left( x \right)$ we can say that to find $f\left( {f\left( 2 \right)} \right)$ we replace $x$ by value of $f\left( 2 \right)$ in the given function.
So, firstly find the value of $f\left( 2 \right)$
By, Putting the value $x = 2$ in the given equation we get the value of $f\left( 2 \right)$ as
$f\left( 2 \right) = \dfrac{{2 \times 2 + 1}}{{3 \times 2 - 2}}$
$ \Rightarrow f\left( 2 \right) = \dfrac{{4 + 1}}{{6 - 2}}$
$\therefore f\left( 2 \right) = \dfrac{5}{4}$
To find the value of $f\left( {f\left( 2 \right)} \right)$ , we should replace the $x$ of given function by $f\left( 2 \right)$.
It gives $f\left( {f\left( 2 \right)} \right) = \dfrac{{2f\left( 2 \right) + 1}}{{3f\left( 2 \right) - 2}}$
Above, we get $f\left( 2 \right)$ is equal to $\dfrac{5}{4}$ , put the value of $x = f\left( 2 \right)$ in the given function $f\left( x \right)$
Then, put $f\left( 2 \right) = \dfrac{5}{4}$ in the above equation.
This implies
$ \Rightarrow f\left( {\dfrac{5}{4}} \right) = \dfrac{{\dfrac{{10 + 4}}{4}}}{{\dfrac{{15 - 8}}{4}}}$
$ \Rightarrow f\left( {\dfrac{5}{4}} \right) = \dfrac{{14}}{7}$
$\therefore f\left( {\dfrac{5}{4}} \right) = 2$
Thus, the required value of the function $f\left( {f\left( 2 \right)} \right) = 2$
Hence, option D is the correct option.
Note:
The given function $f\left( {f\left( x \right)} \right)$ is an identity function. We can verify it by putting $x = y$ in the given function. If a function is an identity function then its value will remain the same as that of the variable of that function.
Proof:Put in the equation $$f\left( x \right) = \dfrac{{2x + 1}}{{3x - 2}}$$
$x = y$, Then, we get $$f\left( y \right) = \dfrac{{2y + 1}}{{3y - 2}}$$
$f\left( {f\left( y \right)} \right) = \dfrac{{2f\left( y \right) + 1}}{{3f\left( y \right) - 2}}$
And then the value of
$\eqalign{
& \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{2\left( {\dfrac{{2y + 1}}{{3y - 2}}} \right) + 1}}{{3\left( {\dfrac{{2y + 1}}{{3y - 2}}} \right) - 2}} \cr
& \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{\dfrac{{4y + 2 + 3y - 2}}{{3y - 2}}}}{{\dfrac{{6y + 3 - 6y + 4}}{{3y - 2}}}} \cr
& \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{7y}}{7} \cr
& \Rightarrow f\left( {f\left( y \right)} \right) = y \cr} $
This derivation shows that this function is an identity function so the value of $f\left( {f\left( x \right)} \right)$ is the same as the value of $x$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell