
If $f\left( x \right)+2f\left( 1-x \right)={{x}^{2}}+2\ \ \gamma \ \ x\in \text{R}$ then find f (x):
A. ${{\left( x-1 \right)}^{{\scriptstyle{}^{2}/{}_{3}}}}$
B. \[-{{\left( x-2 \right)}^{{\scriptstyle{}^{2}/{}_{3}}}}\]
C. ${{x}^{2}}-1$
D. ${{x}^{2}}-2$
Answer
511.5k+ views
Hint: Since $f(x)+2f\left( 1-x \right)={{x}^{2}}+2$ is given. We replace x by $\left( 1-x \right)$ to get another equation. We solve both the equations to calculate f (x).
Complete step by step solution: We are given that,
$f(x)+2f(1-x)={{x}^{2}}+2:$ →(1)
Replacing x by $\left( 1-x \right)$ in the above equation (1) to get;
$f(1-x)+2f\left[ 1-\left( 1-x \right) \right]={{\left( 1-x \right)}^{2}}+2$
Solving this equation, we get
$f(1-x)+2f\left( 1-1+x \right)={{x}^{2}}-2x+1+2$
Simplifying further we get,
$f(1-x)+2f\left( -x \right)={{x}^{2}}-2x+3$
We have two equations:
$f(x)+2f\left( 1-x \right)={{x}^{2}}+2$ → eq (1)
& $2f(x)+f\left( 1-x \right)={{x}^{2}}-2x+3$ → eq (2)
Subtract eq (1) from eq (2) we get
$2f(x)+f\left( 1-x \right)-f(x)-2f(1-x)={{x}^{2}}-2x+3-{{x}^{2}}-2$
$\Rightarrow f(x)-f\left( 1-x \right)=-2x+1$ → eq (3)
But we know: $2f(x)+f\left( 1-x \right)={{x}^{2}}-2x+3$ from eq (2)
$\Rightarrow f(1-x)={{x}^{2}}-2x+3-2f\left( x \right)$
Substituting this $f(1-x)={{x}^{2}}-2x+3-2f\left( x \right)$ in eq (3) to get
$\Rightarrow f(x)-\left( {{x}^{2}}-2x+3-2f(x) \right)=-2x+1$
$\Rightarrow f(x)-{{x}^{2}}+2x-3+2f(x)=-2x+1$
$\Rightarrow 3f(x)=-2x+1+{{x}^{2}}-2x+3$
$3f(x)={{x}^{2}}-4x+4$
$3f(x)={{\left( x-2 \right)}^{2}}$
$\therefore $
∴None of the option matches the answer
The answer \[f\left( x \right)=\dfrac{{{\left( x-2 \right)}^{2}}}{3}\]
Note: In these types of problem, we always replace x by some 1 – x or 1+ x or 2 – x.Whatever the question demands and then we eliminate another variable to calculate f(x).
Complete step by step solution: We are given that,
$f(x)+2f(1-x)={{x}^{2}}+2:$ →(1)
Replacing x by $\left( 1-x \right)$ in the above equation (1) to get;
$f(1-x)+2f\left[ 1-\left( 1-x \right) \right]={{\left( 1-x \right)}^{2}}+2$
Solving this equation, we get
$f(1-x)+2f\left( 1-1+x \right)={{x}^{2}}-2x+1+2$
Simplifying further we get,
$f(1-x)+2f\left( -x \right)={{x}^{2}}-2x+3$
We have two equations:
$f(x)+2f\left( 1-x \right)={{x}^{2}}+2$ → eq (1)
& $2f(x)+f\left( 1-x \right)={{x}^{2}}-2x+3$ → eq (2)
Subtract eq (1) from eq (2) we get
$2f(x)+f\left( 1-x \right)-f(x)-2f(1-x)={{x}^{2}}-2x+3-{{x}^{2}}-2$
$\Rightarrow f(x)-f\left( 1-x \right)=-2x+1$ → eq (3)
But we know: $2f(x)+f\left( 1-x \right)={{x}^{2}}-2x+3$ from eq (2)
$\Rightarrow f(1-x)={{x}^{2}}-2x+3-2f\left( x \right)$
Substituting this $f(1-x)={{x}^{2}}-2x+3-2f\left( x \right)$ in eq (3) to get
$\Rightarrow f(x)-\left( {{x}^{2}}-2x+3-2f(x) \right)=-2x+1$
$\Rightarrow f(x)-{{x}^{2}}+2x-3+2f(x)=-2x+1$
$\Rightarrow 3f(x)=-2x+1+{{x}^{2}}-2x+3$
$3f(x)={{x}^{2}}-4x+4$
$3f(x)={{\left( x-2 \right)}^{2}}$
$\therefore $
∴None of the option matches the answer
The answer \[f\left( x \right)=\dfrac{{{\left( x-2 \right)}^{2}}}{3}\]
Note: In these types of problem, we always replace x by some 1 – x or 1+ x or 2 – x.Whatever the question demands and then we eliminate another variable to calculate f(x).
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
