
If $f\left( x \right)+2f\left( 1-x \right)={{x}^{2}}+2\ \ \gamma \ \ x\in \text{R}$ then find f (x):
A. ${{\left( x-1 \right)}^{{\scriptstyle{}^{2}/{}_{3}}}}$
B. \[-{{\left( x-2 \right)}^{{\scriptstyle{}^{2}/{}_{3}}}}\]
C. ${{x}^{2}}-1$
D. ${{x}^{2}}-2$
Answer
574.8k+ views
Hint: Since $f(x)+2f\left( 1-x \right)={{x}^{2}}+2$ is given. We replace x by $\left( 1-x \right)$ to get another equation. We solve both the equations to calculate f (x).
Complete step by step solution: We are given that,
$f(x)+2f(1-x)={{x}^{2}}+2:$ →(1)
Replacing x by $\left( 1-x \right)$ in the above equation (1) to get;
$f(1-x)+2f\left[ 1-\left( 1-x \right) \right]={{\left( 1-x \right)}^{2}}+2$
Solving this equation, we get
$f(1-x)+2f\left( 1-1+x \right)={{x}^{2}}-2x+1+2$
Simplifying further we get,
$f(1-x)+2f\left( -x \right)={{x}^{2}}-2x+3$
We have two equations:
$f(x)+2f\left( 1-x \right)={{x}^{2}}+2$ → eq (1)
& $2f(x)+f\left( 1-x \right)={{x}^{2}}-2x+3$ → eq (2)
Subtract eq (1) from eq (2) we get
$2f(x)+f\left( 1-x \right)-f(x)-2f(1-x)={{x}^{2}}-2x+3-{{x}^{2}}-2$
$\Rightarrow f(x)-f\left( 1-x \right)=-2x+1$ → eq (3)
But we know: $2f(x)+f\left( 1-x \right)={{x}^{2}}-2x+3$ from eq (2)
$\Rightarrow f(1-x)={{x}^{2}}-2x+3-2f\left( x \right)$
Substituting this $f(1-x)={{x}^{2}}-2x+3-2f\left( x \right)$ in eq (3) to get
$\Rightarrow f(x)-\left( {{x}^{2}}-2x+3-2f(x) \right)=-2x+1$
$\Rightarrow f(x)-{{x}^{2}}+2x-3+2f(x)=-2x+1$
$\Rightarrow 3f(x)=-2x+1+{{x}^{2}}-2x+3$
$3f(x)={{x}^{2}}-4x+4$
$3f(x)={{\left( x-2 \right)}^{2}}$
$\therefore $
∴None of the option matches the answer
The answer \[f\left( x \right)=\dfrac{{{\left( x-2 \right)}^{2}}}{3}\]
Note: In these types of problem, we always replace x by some 1 – x or 1+ x or 2 – x.Whatever the question demands and then we eliminate another variable to calculate f(x).
Complete step by step solution: We are given that,
$f(x)+2f(1-x)={{x}^{2}}+2:$ →(1)
Replacing x by $\left( 1-x \right)$ in the above equation (1) to get;
$f(1-x)+2f\left[ 1-\left( 1-x \right) \right]={{\left( 1-x \right)}^{2}}+2$
Solving this equation, we get
$f(1-x)+2f\left( 1-1+x \right)={{x}^{2}}-2x+1+2$
Simplifying further we get,
$f(1-x)+2f\left( -x \right)={{x}^{2}}-2x+3$
We have two equations:
$f(x)+2f\left( 1-x \right)={{x}^{2}}+2$ → eq (1)
& $2f(x)+f\left( 1-x \right)={{x}^{2}}-2x+3$ → eq (2)
Subtract eq (1) from eq (2) we get
$2f(x)+f\left( 1-x \right)-f(x)-2f(1-x)={{x}^{2}}-2x+3-{{x}^{2}}-2$
$\Rightarrow f(x)-f\left( 1-x \right)=-2x+1$ → eq (3)
But we know: $2f(x)+f\left( 1-x \right)={{x}^{2}}-2x+3$ from eq (2)
$\Rightarrow f(1-x)={{x}^{2}}-2x+3-2f\left( x \right)$
Substituting this $f(1-x)={{x}^{2}}-2x+3-2f\left( x \right)$ in eq (3) to get
$\Rightarrow f(x)-\left( {{x}^{2}}-2x+3-2f(x) \right)=-2x+1$
$\Rightarrow f(x)-{{x}^{2}}+2x-3+2f(x)=-2x+1$
$\Rightarrow 3f(x)=-2x+1+{{x}^{2}}-2x+3$
$3f(x)={{x}^{2}}-4x+4$
$3f(x)={{\left( x-2 \right)}^{2}}$
$\therefore $
∴None of the option matches the answer
The answer \[f\left( x \right)=\dfrac{{{\left( x-2 \right)}^{2}}}{3}\]
Note: In these types of problem, we always replace x by some 1 – x or 1+ x or 2 – x.Whatever the question demands and then we eliminate another variable to calculate f(x).
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

