
If $f\left( x+ay,x-ay \right)=axy$ then $f\left( x,y \right)$ is equal to:
(a) $\dfrac{{{x}^{2}}-{{y}^{2}}}{4}$
(b) $\dfrac{{{x}^{2}}+{{y}^{2}}}{4}$
(c) $4xy$
(d) none
Answer
522.3k+ views
Hint: Firstly, we need to substitute $x+ay=p$ and $x-ay=q$. On solving these two equations, we will obtain the values of x and y in terms of p and q. We can then substitute these values of x and y to obtain the value of $f\left( p,q \right)$. Finally, on replacing p by x and q by y we will obtain the required value of $f\left( x,y \right)$.
Complete step-by-step answer:
The given identity in the above question is written as
$\Rightarrow f\left( x+ay,x-ay \right)=axy......\left( i \right)$
According to the question, we need to find the value of $f\left( x,y \right)$. For this, le us assume
$\begin{align}
& \Rightarrow x+ay=p.......\left( ii \right) \\
& \Rightarrow x-ay=q.......\left( iii \right) \\
\end{align}$
Adding the equations (ii) and (iii) we get
\[\begin{align}
& \Rightarrow x+ay+x-ay=p+q \\
& \Rightarrow 2x=p+q \\
\end{align}\]
Dividing by \[2\] we get
$\Rightarrow x=\dfrac{p+q}{2}.......\left( iv \right)$
Putting this in the equation (ii) we get
$\Rightarrow \dfrac{p+q}{2}+ay=p$
Subtracting $\dfrac{p+q}{2}$ from both the sides
\[\begin{align}
& \Rightarrow \dfrac{p+q}{2}+ay-\dfrac{p+q}{2}=p-\dfrac{p+q}{2} \\
& \Rightarrow ay=\dfrac{2p-\left( p+q \right)}{2} \\
& \Rightarrow ay=\dfrac{2p-p-q}{2} \\
& \Rightarrow ay=\dfrac{p-q}{2} \\
\end{align}\]
Dividing both the sides by a we get
$\Rightarrow y=\dfrac{p-q}{2a}.......\left( v \right)$
On putting the equations (iv) and (v) into the equation (i) we get
\[\begin{align}
& \Rightarrow f\left( p,q \right)=a\left( \dfrac{p+q}{2} \right)\left( \dfrac{p-q}{2a} \right) \\
& \Rightarrow f\left( p,q \right)=a\dfrac{\left( p+q \right)\left( p-q \right)}{4a} \\
& \Rightarrow f\left( p,q \right)=\dfrac{\left( p+q \right)\left( p-q \right)}{4} \\
\end{align}\]
Now, using the distributive rule of the algebraic identity, which is given by $a\left( b+c \right)$, we can write the above expression as
$\begin{align}
& \Rightarrow f\left( p,q \right)=\dfrac{\left( p+q \right)p+\left( p+q \right)\left( -q \right)}{4} \\
& \Rightarrow f\left( p,q \right)=\dfrac{p\left( p+q \right)-q\left( p+q \right)}{4} \\
\end{align}$
Now, again using the distributive law, we can write the above equation as
\[\begin{align}
& \Rightarrow f\left( p,q \right)=\dfrac{{{p}^{2}}+pq-pq-{{q}^{2}}}{4} \\
& \Rightarrow f\left( p,q \right)=\dfrac{{{p}^{2}}-{{q}^{2}}}{4} \\
\end{align}\]
Finally replacing p by x and q by y in the above equation, we get
\[\Rightarrow f\left( x,y \right)=\dfrac{{{x}^{2}}-{{y}^{2}}}{4}\]
So, the correct answer is “Option A”.
Note: Do not try to put $x+ay=x$ and $x-ay=y$ as that would give absurd results. For this reason only, we included dummy variables p and q which were finally replaced with x and y respectively. We can also use the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ to directly expand the expression \[\dfrac{\left( p+q \right)\left( p-q \right)}{4}\].
Complete step-by-step answer:
The given identity in the above question is written as
$\Rightarrow f\left( x+ay,x-ay \right)=axy......\left( i \right)$
According to the question, we need to find the value of $f\left( x,y \right)$. For this, le us assume
$\begin{align}
& \Rightarrow x+ay=p.......\left( ii \right) \\
& \Rightarrow x-ay=q.......\left( iii \right) \\
\end{align}$
Adding the equations (ii) and (iii) we get
\[\begin{align}
& \Rightarrow x+ay+x-ay=p+q \\
& \Rightarrow 2x=p+q \\
\end{align}\]
Dividing by \[2\] we get
$\Rightarrow x=\dfrac{p+q}{2}.......\left( iv \right)$
Putting this in the equation (ii) we get
$\Rightarrow \dfrac{p+q}{2}+ay=p$
Subtracting $\dfrac{p+q}{2}$ from both the sides
\[\begin{align}
& \Rightarrow \dfrac{p+q}{2}+ay-\dfrac{p+q}{2}=p-\dfrac{p+q}{2} \\
& \Rightarrow ay=\dfrac{2p-\left( p+q \right)}{2} \\
& \Rightarrow ay=\dfrac{2p-p-q}{2} \\
& \Rightarrow ay=\dfrac{p-q}{2} \\
\end{align}\]
Dividing both the sides by a we get
$\Rightarrow y=\dfrac{p-q}{2a}.......\left( v \right)$
On putting the equations (iv) and (v) into the equation (i) we get
\[\begin{align}
& \Rightarrow f\left( p,q \right)=a\left( \dfrac{p+q}{2} \right)\left( \dfrac{p-q}{2a} \right) \\
& \Rightarrow f\left( p,q \right)=a\dfrac{\left( p+q \right)\left( p-q \right)}{4a} \\
& \Rightarrow f\left( p,q \right)=\dfrac{\left( p+q \right)\left( p-q \right)}{4} \\
\end{align}\]
Now, using the distributive rule of the algebraic identity, which is given by $a\left( b+c \right)$, we can write the above expression as
$\begin{align}
& \Rightarrow f\left( p,q \right)=\dfrac{\left( p+q \right)p+\left( p+q \right)\left( -q \right)}{4} \\
& \Rightarrow f\left( p,q \right)=\dfrac{p\left( p+q \right)-q\left( p+q \right)}{4} \\
\end{align}$
Now, again using the distributive law, we can write the above equation as
\[\begin{align}
& \Rightarrow f\left( p,q \right)=\dfrac{{{p}^{2}}+pq-pq-{{q}^{2}}}{4} \\
& \Rightarrow f\left( p,q \right)=\dfrac{{{p}^{2}}-{{q}^{2}}}{4} \\
\end{align}\]
Finally replacing p by x and q by y in the above equation, we get
\[\Rightarrow f\left( x,y \right)=\dfrac{{{x}^{2}}-{{y}^{2}}}{4}\]
So, the correct answer is “Option A”.
Note: Do not try to put $x+ay=x$ and $x-ay=y$ as that would give absurd results. For this reason only, we included dummy variables p and q which were finally replaced with x and y respectively. We can also use the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ to directly expand the expression \[\dfrac{\left( p+q \right)\left( p-q \right)}{4}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

