
If \[f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = x + 2\], \[x \ne - \dfrac{4}{3},\] and \[\int {f(x)dx = A\log \left| {1 - x} \right|} + Bx + C\], then the ordered pair \[(A,B)\] is equal to (where C is the constant of integration)
(A). \[\left( {\dfrac{8}{3},\dfrac{2}{3}} \right)\]
(B). \[\left( { - \dfrac{8}{3},\dfrac{2}{3}} \right)\]
(C). \[\left( { - \dfrac{8}{3}, - \dfrac{2}{3}} \right)\]
(D). \[\left( {\dfrac{8}{3}, - \dfrac{2}{3}} \right)\]
Answer
511.8k+ views
Hint: To solve this question at first we have to differentiate the integral with respect to x to evaluate \[f(x)\]. Then we must substitute \[\dfrac{{3x - 4}}{{3x + 4}}\] in place of x in the obtained expression and determine the value of A and B by the method of equating the coefficients.
Complete step-by-step answer:
The integral is given by
\[\int {f(x)dx = A\log \left| {1 - x} \right|} + Bx + C\] ……………………………… (1)
Now we have to get the value of \[f(x)\] in terms of A and B. differentiating both the sides with respect to x, we will get,
\[
\Rightarrow \dfrac{d}{{dx}}\int {f(x)dx = \dfrac{d}{{dx}}\left[ {A\log \left| {1 - x} \right| + Bx + C} \right]} \\
\Rightarrow f(x) = \dfrac{A}{{\left( {1 - x} \right)}}\dfrac{d}{{dx}}\left( {1 - x} \right) + B\dfrac{{dx}}{{dx}} + 0 \\
\Rightarrow f(x) = \dfrac{A}{{x - 1}} + B \\
\] ………………………………… (2)
Let’s substitute \[\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right)\]in place of x in eq. (2), we will get,
\[
\Rightarrow f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = \dfrac{A}{{\dfrac{{3x - 4}}{{3x + 4}} - 1}} + B \\
\Rightarrow f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = \dfrac{{A\left( {3x + 4} \right)}}{{3x - 4 - \left( {3x + 4} \right)}} + B \\
\Rightarrow f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = - \dfrac{{A\left( {3x + 4} \right)}}{8} + B \\
\] …………………………… (3)
But in the question it is given that
\[f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = x + 2\] ………………………... (4)
Substituting the value of eq. (4) in eq. (3) we will get,
\[
\Rightarrow x + 2 = - \dfrac{{A\left( {3x + 4} \right)}}{8} + B \\
\Rightarrow 8\left( {x + 2} \right) = - A\left( {3x + 4} \right) + 8B \\
\Rightarrow 8x + 16 = ( - 3A)x + (8B - 4A) \\
\] ……………………………… (5)
Here applying the method of equating the coefficient, we have to equate the coefficient of x on the both sides we will get,
\[
\Rightarrow 8 = - 3A \\
\Rightarrow A = - \dfrac{8}{3} \\
\]
………………………………….. (6)
Similarly equating the constant terms on both the sides of eq. (5) we will get,
\[
\Rightarrow 8B - 4A = 16 \\
\Rightarrow B = \dfrac{{16 + 4A}}{8} \\
\]
…………………………….. (7)
Substituting the value of eq. (6) in eq. (7) we will get,
\[
\Rightarrow B = \dfrac{{16 + 4\left( { - \dfrac{8}{3}} \right)}}{8} \\
\Rightarrow B = \dfrac{{16}}{{24}} = \dfrac{2}{3} \\
\]
…………………………………….. (8)
\[(A,B) = \left( { - \dfrac{8}{3},\dfrac{2}{3}} \right)\]
Therefore option (B) is correct.
Note: The method of equating the coefficients needs the fact that two expressions are identical precisely when corresponding coefficients are equal for each different type of them. While equating one should focus on the degree of the polynomials of the term of either side must be the same.
Complete step-by-step answer:
The integral is given by
\[\int {f(x)dx = A\log \left| {1 - x} \right|} + Bx + C\] ……………………………… (1)
Now we have to get the value of \[f(x)\] in terms of A and B. differentiating both the sides with respect to x, we will get,
\[
\Rightarrow \dfrac{d}{{dx}}\int {f(x)dx = \dfrac{d}{{dx}}\left[ {A\log \left| {1 - x} \right| + Bx + C} \right]} \\
\Rightarrow f(x) = \dfrac{A}{{\left( {1 - x} \right)}}\dfrac{d}{{dx}}\left( {1 - x} \right) + B\dfrac{{dx}}{{dx}} + 0 \\
\Rightarrow f(x) = \dfrac{A}{{x - 1}} + B \\
\] ………………………………… (2)
Let’s substitute \[\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right)\]in place of x in eq. (2), we will get,
\[
\Rightarrow f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = \dfrac{A}{{\dfrac{{3x - 4}}{{3x + 4}} - 1}} + B \\
\Rightarrow f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = \dfrac{{A\left( {3x + 4} \right)}}{{3x - 4 - \left( {3x + 4} \right)}} + B \\
\Rightarrow f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = - \dfrac{{A\left( {3x + 4} \right)}}{8} + B \\
\] …………………………… (3)
But in the question it is given that
\[f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = x + 2\] ………………………... (4)
Substituting the value of eq. (4) in eq. (3) we will get,
\[
\Rightarrow x + 2 = - \dfrac{{A\left( {3x + 4} \right)}}{8} + B \\
\Rightarrow 8\left( {x + 2} \right) = - A\left( {3x + 4} \right) + 8B \\
\Rightarrow 8x + 16 = ( - 3A)x + (8B - 4A) \\
\] ……………………………… (5)
Here applying the method of equating the coefficient, we have to equate the coefficient of x on the both sides we will get,
\[
\Rightarrow 8 = - 3A \\
\Rightarrow A = - \dfrac{8}{3} \\
\]
………………………………….. (6)
Similarly equating the constant terms on both the sides of eq. (5) we will get,
\[
\Rightarrow 8B - 4A = 16 \\
\Rightarrow B = \dfrac{{16 + 4A}}{8} \\
\]
…………………………….. (7)
Substituting the value of eq. (6) in eq. (7) we will get,
\[
\Rightarrow B = \dfrac{{16 + 4\left( { - \dfrac{8}{3}} \right)}}{8} \\
\Rightarrow B = \dfrac{{16}}{{24}} = \dfrac{2}{3} \\
\]
…………………………………….. (8)
\[(A,B) = \left( { - \dfrac{8}{3},\dfrac{2}{3}} \right)\]
Therefore option (B) is correct.
Note: The method of equating the coefficients needs the fact that two expressions are identical precisely when corresponding coefficients are equal for each different type of them. While equating one should focus on the degree of the polynomials of the term of either side must be the same.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
