
If $f\left( 1 \right)=1,f'\left( 1 \right)=3$ then the value of derivative of $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ at x = 1 is:
a. 9
b. 33
c. 12
d. 20
Answer
508.2k+ views
Hint: This question involves the concept of differentiation. In this question, we have to calculate the derivative of a function. We will assume that a function as H(x), then we will find the derivative of that function with respect to x, using some rules of derivation like,
Rule 1: $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)g'\left( x \right)$
Rule 2: $\dfrac{d}{dx}\left( f\left( x \right).g\left( x \right) \right)=f'\left( x \right).g\left( x \right)+g'\left( x \right).f\left( x \right)$
Then, we will put x = 1 in the equation of H’(x) and using the values given in the question, we will solve the equation and get the value of H’(1).
Complete step by step answer:
It is given in the question that if $f\left( 1 \right)=1,f'\left( 1 \right)=3$, we have been asked to find the value of derivative of $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ at x = 1.
So, let us consider the given function, $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ as H(x). So, we can write,
$H\left( x \right)=f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$
So, we have to find H’(x) at x = 1 and let H’(1).
Now, we will calculate H’(x).
We can find the derivative of H(x), by considering each term of that function individually, which are $f\left( f\left( f\left( x \right) \right) \right)$ and ${{\left( f\left( x \right) \right)}^{2}}$ and differentiating them.
So, first we will find the derivative of $f\left( f\left( f\left( x \right) \right) \right)$, so we get,
\[\begin{align}
& \dfrac{d}{dx}\left[ f\left( f\left( f\left( x \right) \right) \right) \right]=f'\left( f\left( f\left( x \right) \right) \right)\times \dfrac{d}{dx}f'f\left( x \right) \\
& =f'\left( f\left( f\left( x \right) \right) \right).f'\left( f\left( x \right) \right).f'\left( x \right) \\
\end{align}\]
Now, we will find the derivative of ${{\left( f\left( x \right) \right)}^{2}}$, so we get,
$\begin{align}
& \dfrac{d}{dx}{{\left( f\left( x \right) \right)}^{2}}=f\left( x \right).f'\left( x \right)+f'\left( x \right).f\left( x \right) \\
& =2f\left( x \right).f'\left( x \right) \\
\end{align}$
So, we can write the derivative of H(x), that is H’(x) by adding the derivatives of both the terms of H(x), so we get,
$\begin{align}
& \dfrac{d}{dx}\left( H\left( x \right) \right)=\dfrac{d}{dx}f\left( f\left( f\left( x \right) \right) \right)+\dfrac{d}{dx}{{\left( f\left( x \right) \right)}^{2}} \\
& H'\left( x \right)=f'\left( f\left( f\left( x \right) \right) \right).f'\left( f\left( x \right) \right).f'\left( x \right)+2f\left( x \right).f'\left( x \right) \\
\end{align}$
On putting x = 1, we get,
$H'\left( 1 \right)=f'\left( f\left( f\left( 1 \right) \right) \right).f'\left( f\left( 1 \right) \right).f'\left( 1 \right)+2f\left( 1 \right).f'\left( 1 \right)$
Now, we have been given that $f\left( 1 \right)=1,f'\left( 1 \right)=3$, so on substituting these values in the above equation, we get,
$H'\left( 1 \right)=f'\left( f\left( 1 \right) \right).f'\left( 1 \right).3+\left( 2\times 1\times 3 \right)$
Again putting $f\left( 1 \right)=1,f'\left( 1 \right)=3$, we get,
$H'\left( 1 \right)=f'\left( 1 \right)\times 3\times 3+\left( 6 \right)$
Again putting $f'\left( 1 \right)=3$, we get,
$\begin{align}
& H'\left( 1 \right)=3\times 3\times 3+\left( 6 \right) \\
& H'\left( 1 \right)=27+6 \\
& H'\left( 1 \right)=33 \\
\end{align}$
Therefore, we get the value of the derivative of $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ at x = 1 as 33.
So, the correct answer is “Option B”.
Note: In this question, for derivation of function ${{\left( f\left( x \right) \right)}^{2}}$, we can also use the rule, that is,
$\dfrac{d}{dx}{{\left( f\left( x \right) \right)}^{n}}=n.{{\left( f\left( x \right) \right)}^{n-1}}.f'\left( x \right)$
And for derivation of $f\left( f\left( f\left( x \right) \right) \right)$, we can do the following.
Consider $f\left( f\left( x \right) \right)=g\left( x \right)$. Hence, we can write, H(x) as,
$H\left( x \right)=f\left( g\left( x \right) \right)$
So, its derivative will be,
$H'\left( x \right)=f'\left( g\left( x \right) \right).g'\left( x \right)$
And the derivative of g(x) will be, $g'\left( x \right)=f'\left( f\left( x \right) \right).f'\left( x \right)$. So, we will get,
$H'\left( x \right)=f'\left( f\left( f\left( x \right) \right) \right).f'\left( f\left( x \right) \right).f'\left( x \right)$
Rule 1: $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)g'\left( x \right)$
Rule 2: $\dfrac{d}{dx}\left( f\left( x \right).g\left( x \right) \right)=f'\left( x \right).g\left( x \right)+g'\left( x \right).f\left( x \right)$
Then, we will put x = 1 in the equation of H’(x) and using the values given in the question, we will solve the equation and get the value of H’(1).
Complete step by step answer:
It is given in the question that if $f\left( 1 \right)=1,f'\left( 1 \right)=3$, we have been asked to find the value of derivative of $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ at x = 1.
So, let us consider the given function, $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ as H(x). So, we can write,
$H\left( x \right)=f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$
So, we have to find H’(x) at x = 1 and let H’(1).
Now, we will calculate H’(x).
We can find the derivative of H(x), by considering each term of that function individually, which are $f\left( f\left( f\left( x \right) \right) \right)$ and ${{\left( f\left( x \right) \right)}^{2}}$ and differentiating them.
So, first we will find the derivative of $f\left( f\left( f\left( x \right) \right) \right)$, so we get,
\[\begin{align}
& \dfrac{d}{dx}\left[ f\left( f\left( f\left( x \right) \right) \right) \right]=f'\left( f\left( f\left( x \right) \right) \right)\times \dfrac{d}{dx}f'f\left( x \right) \\
& =f'\left( f\left( f\left( x \right) \right) \right).f'\left( f\left( x \right) \right).f'\left( x \right) \\
\end{align}\]
Now, we will find the derivative of ${{\left( f\left( x \right) \right)}^{2}}$, so we get,
$\begin{align}
& \dfrac{d}{dx}{{\left( f\left( x \right) \right)}^{2}}=f\left( x \right).f'\left( x \right)+f'\left( x \right).f\left( x \right) \\
& =2f\left( x \right).f'\left( x \right) \\
\end{align}$
So, we can write the derivative of H(x), that is H’(x) by adding the derivatives of both the terms of H(x), so we get,
$\begin{align}
& \dfrac{d}{dx}\left( H\left( x \right) \right)=\dfrac{d}{dx}f\left( f\left( f\left( x \right) \right) \right)+\dfrac{d}{dx}{{\left( f\left( x \right) \right)}^{2}} \\
& H'\left( x \right)=f'\left( f\left( f\left( x \right) \right) \right).f'\left( f\left( x \right) \right).f'\left( x \right)+2f\left( x \right).f'\left( x \right) \\
\end{align}$
On putting x = 1, we get,
$H'\left( 1 \right)=f'\left( f\left( f\left( 1 \right) \right) \right).f'\left( f\left( 1 \right) \right).f'\left( 1 \right)+2f\left( 1 \right).f'\left( 1 \right)$
Now, we have been given that $f\left( 1 \right)=1,f'\left( 1 \right)=3$, so on substituting these values in the above equation, we get,
$H'\left( 1 \right)=f'\left( f\left( 1 \right) \right).f'\left( 1 \right).3+\left( 2\times 1\times 3 \right)$
Again putting $f\left( 1 \right)=1,f'\left( 1 \right)=3$, we get,
$H'\left( 1 \right)=f'\left( 1 \right)\times 3\times 3+\left( 6 \right)$
Again putting $f'\left( 1 \right)=3$, we get,
$\begin{align}
& H'\left( 1 \right)=3\times 3\times 3+\left( 6 \right) \\
& H'\left( 1 \right)=27+6 \\
& H'\left( 1 \right)=33 \\
\end{align}$
Therefore, we get the value of the derivative of $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ at x = 1 as 33.
So, the correct answer is “Option B”.
Note: In this question, for derivation of function ${{\left( f\left( x \right) \right)}^{2}}$, we can also use the rule, that is,
$\dfrac{d}{dx}{{\left( f\left( x \right) \right)}^{n}}=n.{{\left( f\left( x \right) \right)}^{n-1}}.f'\left( x \right)$
And for derivation of $f\left( f\left( f\left( x \right) \right) \right)$, we can do the following.
Consider $f\left( f\left( x \right) \right)=g\left( x \right)$. Hence, we can write, H(x) as,
$H\left( x \right)=f\left( g\left( x \right) \right)$
So, its derivative will be,
$H'\left( x \right)=f'\left( g\left( x \right) \right).g'\left( x \right)$
And the derivative of g(x) will be, $g'\left( x \right)=f'\left( f\left( x \right) \right).f'\left( x \right)$. So, we will get,
$H'\left( x \right)=f'\left( f\left( f\left( x \right) \right) \right).f'\left( f\left( x \right) \right).f'\left( x \right)$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
A deep narrow valley with steep sides formed as a result class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
