
If $f\left( 1 \right)=1,f'\left( 1 \right)=3$ then the value of derivative of $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ at x = 1 is:
a. 9
b. 33
c. 12
d. 20
Answer
588.9k+ views
Hint: This question involves the concept of differentiation. In this question, we have to calculate the derivative of a function. We will assume that a function as H(x), then we will find the derivative of that function with respect to x, using some rules of derivation like,
Rule 1: $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)g'\left( x \right)$
Rule 2: $\dfrac{d}{dx}\left( f\left( x \right).g\left( x \right) \right)=f'\left( x \right).g\left( x \right)+g'\left( x \right).f\left( x \right)$
Then, we will put x = 1 in the equation of H’(x) and using the values given in the question, we will solve the equation and get the value of H’(1).
Complete step by step answer:
It is given in the question that if $f\left( 1 \right)=1,f'\left( 1 \right)=3$, we have been asked to find the value of derivative of $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ at x = 1.
So, let us consider the given function, $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ as H(x). So, we can write,
$H\left( x \right)=f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$
So, we have to find H’(x) at x = 1 and let H’(1).
Now, we will calculate H’(x).
We can find the derivative of H(x), by considering each term of that function individually, which are $f\left( f\left( f\left( x \right) \right) \right)$ and ${{\left( f\left( x \right) \right)}^{2}}$ and differentiating them.
So, first we will find the derivative of $f\left( f\left( f\left( x \right) \right) \right)$, so we get,
\[\begin{align}
& \dfrac{d}{dx}\left[ f\left( f\left( f\left( x \right) \right) \right) \right]=f'\left( f\left( f\left( x \right) \right) \right)\times \dfrac{d}{dx}f'f\left( x \right) \\
& =f'\left( f\left( f\left( x \right) \right) \right).f'\left( f\left( x \right) \right).f'\left( x \right) \\
\end{align}\]
Now, we will find the derivative of ${{\left( f\left( x \right) \right)}^{2}}$, so we get,
$\begin{align}
& \dfrac{d}{dx}{{\left( f\left( x \right) \right)}^{2}}=f\left( x \right).f'\left( x \right)+f'\left( x \right).f\left( x \right) \\
& =2f\left( x \right).f'\left( x \right) \\
\end{align}$
So, we can write the derivative of H(x), that is H’(x) by adding the derivatives of both the terms of H(x), so we get,
$\begin{align}
& \dfrac{d}{dx}\left( H\left( x \right) \right)=\dfrac{d}{dx}f\left( f\left( f\left( x \right) \right) \right)+\dfrac{d}{dx}{{\left( f\left( x \right) \right)}^{2}} \\
& H'\left( x \right)=f'\left( f\left( f\left( x \right) \right) \right).f'\left( f\left( x \right) \right).f'\left( x \right)+2f\left( x \right).f'\left( x \right) \\
\end{align}$
On putting x = 1, we get,
$H'\left( 1 \right)=f'\left( f\left( f\left( 1 \right) \right) \right).f'\left( f\left( 1 \right) \right).f'\left( 1 \right)+2f\left( 1 \right).f'\left( 1 \right)$
Now, we have been given that $f\left( 1 \right)=1,f'\left( 1 \right)=3$, so on substituting these values in the above equation, we get,
$H'\left( 1 \right)=f'\left( f\left( 1 \right) \right).f'\left( 1 \right).3+\left( 2\times 1\times 3 \right)$
Again putting $f\left( 1 \right)=1,f'\left( 1 \right)=3$, we get,
$H'\left( 1 \right)=f'\left( 1 \right)\times 3\times 3+\left( 6 \right)$
Again putting $f'\left( 1 \right)=3$, we get,
$\begin{align}
& H'\left( 1 \right)=3\times 3\times 3+\left( 6 \right) \\
& H'\left( 1 \right)=27+6 \\
& H'\left( 1 \right)=33 \\
\end{align}$
Therefore, we get the value of the derivative of $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ at x = 1 as 33.
So, the correct answer is “Option B”.
Note: In this question, for derivation of function ${{\left( f\left( x \right) \right)}^{2}}$, we can also use the rule, that is,
$\dfrac{d}{dx}{{\left( f\left( x \right) \right)}^{n}}=n.{{\left( f\left( x \right) \right)}^{n-1}}.f'\left( x \right)$
And for derivation of $f\left( f\left( f\left( x \right) \right) \right)$, we can do the following.
Consider $f\left( f\left( x \right) \right)=g\left( x \right)$. Hence, we can write, H(x) as,
$H\left( x \right)=f\left( g\left( x \right) \right)$
So, its derivative will be,
$H'\left( x \right)=f'\left( g\left( x \right) \right).g'\left( x \right)$
And the derivative of g(x) will be, $g'\left( x \right)=f'\left( f\left( x \right) \right).f'\left( x \right)$. So, we will get,
$H'\left( x \right)=f'\left( f\left( f\left( x \right) \right) \right).f'\left( f\left( x \right) \right).f'\left( x \right)$
Rule 1: $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)g'\left( x \right)$
Rule 2: $\dfrac{d}{dx}\left( f\left( x \right).g\left( x \right) \right)=f'\left( x \right).g\left( x \right)+g'\left( x \right).f\left( x \right)$
Then, we will put x = 1 in the equation of H’(x) and using the values given in the question, we will solve the equation and get the value of H’(1).
Complete step by step answer:
It is given in the question that if $f\left( 1 \right)=1,f'\left( 1 \right)=3$, we have been asked to find the value of derivative of $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ at x = 1.
So, let us consider the given function, $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ as H(x). So, we can write,
$H\left( x \right)=f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$
So, we have to find H’(x) at x = 1 and let H’(1).
Now, we will calculate H’(x).
We can find the derivative of H(x), by considering each term of that function individually, which are $f\left( f\left( f\left( x \right) \right) \right)$ and ${{\left( f\left( x \right) \right)}^{2}}$ and differentiating them.
So, first we will find the derivative of $f\left( f\left( f\left( x \right) \right) \right)$, so we get,
\[\begin{align}
& \dfrac{d}{dx}\left[ f\left( f\left( f\left( x \right) \right) \right) \right]=f'\left( f\left( f\left( x \right) \right) \right)\times \dfrac{d}{dx}f'f\left( x \right) \\
& =f'\left( f\left( f\left( x \right) \right) \right).f'\left( f\left( x \right) \right).f'\left( x \right) \\
\end{align}\]
Now, we will find the derivative of ${{\left( f\left( x \right) \right)}^{2}}$, so we get,
$\begin{align}
& \dfrac{d}{dx}{{\left( f\left( x \right) \right)}^{2}}=f\left( x \right).f'\left( x \right)+f'\left( x \right).f\left( x \right) \\
& =2f\left( x \right).f'\left( x \right) \\
\end{align}$
So, we can write the derivative of H(x), that is H’(x) by adding the derivatives of both the terms of H(x), so we get,
$\begin{align}
& \dfrac{d}{dx}\left( H\left( x \right) \right)=\dfrac{d}{dx}f\left( f\left( f\left( x \right) \right) \right)+\dfrac{d}{dx}{{\left( f\left( x \right) \right)}^{2}} \\
& H'\left( x \right)=f'\left( f\left( f\left( x \right) \right) \right).f'\left( f\left( x \right) \right).f'\left( x \right)+2f\left( x \right).f'\left( x \right) \\
\end{align}$
On putting x = 1, we get,
$H'\left( 1 \right)=f'\left( f\left( f\left( 1 \right) \right) \right).f'\left( f\left( 1 \right) \right).f'\left( 1 \right)+2f\left( 1 \right).f'\left( 1 \right)$
Now, we have been given that $f\left( 1 \right)=1,f'\left( 1 \right)=3$, so on substituting these values in the above equation, we get,
$H'\left( 1 \right)=f'\left( f\left( 1 \right) \right).f'\left( 1 \right).3+\left( 2\times 1\times 3 \right)$
Again putting $f\left( 1 \right)=1,f'\left( 1 \right)=3$, we get,
$H'\left( 1 \right)=f'\left( 1 \right)\times 3\times 3+\left( 6 \right)$
Again putting $f'\left( 1 \right)=3$, we get,
$\begin{align}
& H'\left( 1 \right)=3\times 3\times 3+\left( 6 \right) \\
& H'\left( 1 \right)=27+6 \\
& H'\left( 1 \right)=33 \\
\end{align}$
Therefore, we get the value of the derivative of $f\left( f\left( f\left( x \right) \right) \right)+{{\left( f\left( x \right) \right)}^{2}}$ at x = 1 as 33.
So, the correct answer is “Option B”.
Note: In this question, for derivation of function ${{\left( f\left( x \right) \right)}^{2}}$, we can also use the rule, that is,
$\dfrac{d}{dx}{{\left( f\left( x \right) \right)}^{n}}=n.{{\left( f\left( x \right) \right)}^{n-1}}.f'\left( x \right)$
And for derivation of $f\left( f\left( f\left( x \right) \right) \right)$, we can do the following.
Consider $f\left( f\left( x \right) \right)=g\left( x \right)$. Hence, we can write, H(x) as,
$H\left( x \right)=f\left( g\left( x \right) \right)$
So, its derivative will be,
$H'\left( x \right)=f'\left( g\left( x \right) \right).g'\left( x \right)$
And the derivative of g(x) will be, $g'\left( x \right)=f'\left( f\left( x \right) \right).f'\left( x \right)$. So, we will get,
$H'\left( x \right)=f'\left( f\left( f\left( x \right) \right) \right).f'\left( f\left( x \right) \right).f'\left( x \right)$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

