
If ${F_1} = 10N$ , and ${F_2} = 20N$ , find ${F_2} - {F_1}$ and $\tan \alpha $.
Answer
496.8k+ views
Hint:To find the resultant of the two vectors and angle between the resultant vector and initial vector, we use the concept of Subtraction of two vectors. The direction of the resultant vector is given by the angle $\alpha $ between resultant and ${F_1}$.
Complete step by step answer:
We know that, The magnitude of the resultant vector $R = {F_2} - {F_1}$ is given by
\[R = {F_2} - {F_1} = \sqrt {F_1^2 + F_2^2 - 2{F_1}{F_2}\cos \theta } \]
Where, $\theta $ is the angle between ${F_1}$ & ${F_2}$
\[\Rightarrow R = {F_2} - {F_1} = \sqrt {{{10}^2} + {{20}^2} - \left( {2 \times 10 \times 20} \right)\cos {{60}^ \circ }} \]
Solving,
\[\Rightarrow R = {F_2} - {F_1} = \sqrt {500 - \left( {400} \right) \times \dfrac{1}{2}} \]
\[\therefore R = {F_2} - {F_1} = \sqrt {500 - 200} = \sqrt {300} \]
We get , \[\therefore {F_2} - {F_1} = 10\sqrt 3 N\]
Now, direction of resultant vector is given by
\[\tan \alpha = \dfrac{{{F_2}\sin \theta }}{{{F_1} - {F_2}\cos \theta }}\]
Substituting the values, we have
\[\tan \alpha = \dfrac{{20\sin {{60}^ \circ }}}{{10 - 20\cos {{60}^ \circ }}}\]
\[\therefore \tan \alpha = \dfrac{{20\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{10 - 20\left( {\dfrac{1}{2}} \right)}}\]
We get, \[\tan \alpha = \infty \]
So, \[\alpha = {90^ \circ }\] as $\tan {90^ \circ }$ is not defined at $\infty $ .
Hence, \[{F_2} - {F_1} = 10\sqrt 3 N\] and \[\tan \alpha = \infty \].
Note: The value of the angle in the question is the angle between two vectors and we are asked to find the value of the angle between resultant and the first force vector. From the calculation, it is cleared that the angle between the resultant and the vector is the right angle.
Complete step by step answer:
We know that, The magnitude of the resultant vector $R = {F_2} - {F_1}$ is given by
\[R = {F_2} - {F_1} = \sqrt {F_1^2 + F_2^2 - 2{F_1}{F_2}\cos \theta } \]
Where, $\theta $ is the angle between ${F_1}$ & ${F_2}$
\[\Rightarrow R = {F_2} - {F_1} = \sqrt {{{10}^2} + {{20}^2} - \left( {2 \times 10 \times 20} \right)\cos {{60}^ \circ }} \]
Solving,
\[\Rightarrow R = {F_2} - {F_1} = \sqrt {500 - \left( {400} \right) \times \dfrac{1}{2}} \]
\[\therefore R = {F_2} - {F_1} = \sqrt {500 - 200} = \sqrt {300} \]
We get , \[\therefore {F_2} - {F_1} = 10\sqrt 3 N\]
Now, direction of resultant vector is given by
\[\tan \alpha = \dfrac{{{F_2}\sin \theta }}{{{F_1} - {F_2}\cos \theta }}\]
Substituting the values, we have
\[\tan \alpha = \dfrac{{20\sin {{60}^ \circ }}}{{10 - 20\cos {{60}^ \circ }}}\]
\[\therefore \tan \alpha = \dfrac{{20\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{10 - 20\left( {\dfrac{1}{2}} \right)}}\]
We get, \[\tan \alpha = \infty \]
So, \[\alpha = {90^ \circ }\] as $\tan {90^ \circ }$ is not defined at $\infty $ .
Hence, \[{F_2} - {F_1} = 10\sqrt 3 N\] and \[\tan \alpha = \infty \].
Note: The value of the angle in the question is the angle between two vectors and we are asked to find the value of the angle between resultant and the first force vector. From the calculation, it is cleared that the angle between the resultant and the vector is the right angle.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

