
If f (x) = max (x, $\dfrac{1}{x}$) for x > 0, where max (a, b) denotes the greater of the two real numbers a and b. Define the function g (x) = f (x) f ($\dfrac{1}{x}$) and plot its graph.
Answer
508.5k+ views
Hint: We will first define max {m (x), n (x)} and them we will divide the function f (x) = max (x, $\dfrac{1}{x}$) into two sub – intervals namely x > $\dfrac{1}{x}$and x < $\dfrac{1}{x}$. Then we will plot the graphs of both x and $\dfrac{1}{x}$. Then, we will define the function f (x) = max (x, $\dfrac{1}{x}$)and then using it,
we can define f (x) = max ( $\dfrac{1}{x}$, x) and thereby we can define g (x) = f (x) f ($\dfrac{1}{x}$).
Complete step-by-step answer:
We are given f (x) = max (x, $\dfrac{1}{x}$).
We can define the function p (x) = max {m (x), n (x)} as
p (x) = $\left\{ {\begin{array}{*{20}{c}}
{m\left( x \right);m\left( x \right) > n\left( x \right)} \\
{n\left( x \right);n\left( x \right) > m\left( x \right)}
\end{array}} \right.$
Hence, we can define the given function f (x) = max (x, $\dfrac{1}{x}$)if we divide it into two sub – intervals as x > $\dfrac{1}{x}$and x < $\dfrac{1}{x}$. We can plot the graph of x and $\dfrac{1}{x}$ at the same graph, hence determining the exact functional form.
Graph:
In the graph, the blue curve represents the graph of $\dfrac{1}{x}$ and the red line represents the graph of x.
From the graph and by the definition of p (x) = max {m (x), n (x)}, we can say that
$ \Rightarrow $f (x) = max (x, $\dfrac{1}{x}$) = $\left\{ {\begin{array}{*{20}{c}}
{\dfrac{1}{x};x \in \left( {0,1} \right]} \\
{x;x \in \left[ {1,\infty } \right)}
\end{array}} \right.$
We can say that f (x) = max ($\dfrac{1}{x}$, x) = $\left\{ {\begin{array}{*{20}{c}}
{\dfrac{1}{x};x \in \left( {0,1} \right]} \\
{x;x \in \left[ {1,\infty } \right)}
\end{array}} \right.$
We can check by assuming x = 3 or 4 and $\dfrac{1}{3}$or $\dfrac{1}{4}$(just for example)
Therefore, g (x) = f (x) f ($\dfrac{1}{x}$) can be defined as:
$ \Rightarrow $ g (x) = f (x) f ($\dfrac{1}{x}$) = $\left\{ {\begin{array}{*{20}{c}}
{\dfrac{1}{{{x^2}}};x \in \left( {0,1} \right]} \\
{{x^2};x \in \left[ {1,\infty } \right)}
\end{array}} \right.$
Now, we can plot its graph as:
Note: In such questions, you may get confused while defining the functions and their range. Be careful in plotting the graphs of all the four functions and defining the acceptable region. You can also solve the first part of the question by defining the range of the function x and $\dfrac{1}{x}$ instead of plotting the graph.
we can define f (x) = max ( $\dfrac{1}{x}$, x) and thereby we can define g (x) = f (x) f ($\dfrac{1}{x}$).
Complete step-by-step answer:
We are given f (x) = max (x, $\dfrac{1}{x}$).
We can define the function p (x) = max {m (x), n (x)} as
p (x) = $\left\{ {\begin{array}{*{20}{c}}
{m\left( x \right);m\left( x \right) > n\left( x \right)} \\
{n\left( x \right);n\left( x \right) > m\left( x \right)}
\end{array}} \right.$
Hence, we can define the given function f (x) = max (x, $\dfrac{1}{x}$)if we divide it into two sub – intervals as x > $\dfrac{1}{x}$and x < $\dfrac{1}{x}$. We can plot the graph of x and $\dfrac{1}{x}$ at the same graph, hence determining the exact functional form.
Graph:

In the graph, the blue curve represents the graph of $\dfrac{1}{x}$ and the red line represents the graph of x.
From the graph and by the definition of p (x) = max {m (x), n (x)}, we can say that
$ \Rightarrow $f (x) = max (x, $\dfrac{1}{x}$) = $\left\{ {\begin{array}{*{20}{c}}
{\dfrac{1}{x};x \in \left( {0,1} \right]} \\
{x;x \in \left[ {1,\infty } \right)}
\end{array}} \right.$
We can say that f (x) = max ($\dfrac{1}{x}$, x) = $\left\{ {\begin{array}{*{20}{c}}
{\dfrac{1}{x};x \in \left( {0,1} \right]} \\
{x;x \in \left[ {1,\infty } \right)}
\end{array}} \right.$
We can check by assuming x = 3 or 4 and $\dfrac{1}{3}$or $\dfrac{1}{4}$(just for example)
Therefore, g (x) = f (x) f ($\dfrac{1}{x}$) can be defined as:
$ \Rightarrow $ g (x) = f (x) f ($\dfrac{1}{x}$) = $\left\{ {\begin{array}{*{20}{c}}
{\dfrac{1}{{{x^2}}};x \in \left( {0,1} \right]} \\
{{x^2};x \in \left[ {1,\infty } \right)}
\end{array}} \right.$
Now, we can plot its graph as:

Note: In such questions, you may get confused while defining the functions and their range. Be careful in plotting the graphs of all the four functions and defining the acceptable region. You can also solve the first part of the question by defining the range of the function x and $\dfrac{1}{x}$ instead of plotting the graph.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
