
If \[{{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}} = {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x\], then \[{\text{y'}}\left( 0 \right)\] can be
A) $\dfrac{1}{{3\sqrt \pi }}$
B) $ - \dfrac{1}{{3\sqrt \pi }}$
C) $ - \dfrac{1}{{5\sqrt \pi }}$
D) $ - \dfrac{1}{{3\sqrt {5\pi } }}$
Answer
564.3k+ views
Hint: This problem comes under implicit function on differentiation. We need to solve separately and want to differentiate on the function and want to find y and then there will be re arranging and substitute to the equation to compare the coordinates for the solving \[y'(0) = \dfrac{{dy}}{{dx}}\] which first order differentiation and there will be multiple solvable equation and then complete step by step explanation.
Complete step-by-step answer:
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\] \[{{\text{e}}^{\operatorname{Sin} ({x^2} + {y^2})}} = {\text{ tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x - - - - - - - - (1)\]
When \[x = 0\], then the inverse function will be zero and the values of \[x\] will be so, then we get
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}} = {\text{ tan }}\dfrac{{{y^2}}}{4}\]
Taking $\log $ on both sides,
\[ \Rightarrow \sin {y^2} = {\text{ log tan }}\dfrac{{{y^2}}}{4}\]
Hence we get,
\[y = \pm \sqrt x , \pm \sqrt {5x} ,..............\]
Now differentiating equation (1) with respect to x, we get
Let us solve separately Left hand side and Right hand side,
Now differentiate Left hand side
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\cos \left( {{x^2} + {y^2}} \right)\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right)\]
Now differentiate Right hand side
\[ \Rightarrow {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x\]
Differentiating we get,
\[ \Rightarrow \dfrac{{2y}}{4}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} + \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Now again substitute \[x = 0\] and compare,
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}}\left[ {\cos {y^2}\left( {2y\dfrac{{dy}}{{dx}}} \right)} \right] = \dfrac{y}{2}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} - - - - (2)\]
Now substitute \[x\] value and \[y\] value in equation (2), we get \[y'(0) = \dfrac{{dy}}{{dx}}\]
Now, at \[x = 0\], \[y = \sqrt \pi \] in equation in (2),
\[ \Rightarrow {{\text{e}}^{\sin {{(\sqrt \pi )}^2}}}[\cos {(\sqrt \pi )^2}2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{{{{\sqrt \pi }^2}}}{4}\dfrac{{dy}}{{dx}}\]
Now separate \[\dfrac{{dy}}{{dx}}\],
\[ \Rightarrow {{\text{e}}^{\sin \pi }}[\cos \pi ]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}}\]
We know that \[\sin \pi = 0\] and \[\cos \pi = - 1\],
\[ \Rightarrow {{\text{e}}^0}[ - 1]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{(\sec \dfrac{\pi }{4})^2}\dfrac{{dy}}{{dx}}\]
We know that \[{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}} = 2\] and \[{e^0} = 1\],
$ \Rightarrow - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2} \times 2\dfrac{{dy}}{{dx}}$
Cancelling the term $2$ in denominator and numerator,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \sqrt \pi \dfrac{{dy}}{{dx}}\]
Rearranging the terms we get,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} - \sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Taking common term same as in both terms,
$\Rightarrow$\[( - 2\sqrt \pi - \sqrt \pi )\dfrac{{dy}}{{dx}} = 0\]
Subtracting the terms we get,
$\Rightarrow$\[ - 3\sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Hence we get,
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{3\sqrt \pi }}\]
Similarly we can find for when \[x = 0,y = - \sqrt \pi \] we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt \pi }}\]
Similarly we can find for when\[x = 0,y = \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = - \dfrac{1}{{3\sqrt {5\pi } }}\]
Similarly we can find for when \[x = 0,y = - \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\]
There will be multiple answers and for this question, these are,
$\Rightarrow$$\dfrac{1}{{3\sqrt \pi }}$, $ - \dfrac{1}{{3\sqrt \pi }}$ and $ - \dfrac{1}{{3\sqrt {5\pi } }}$
$\therefore $ The correct answers are option A) $\dfrac{1}{{3\sqrt \pi }}$, B) $ - \dfrac{1}{{3\sqrt \pi }}$ and D) $ - \dfrac{1}{{3\sqrt {5\pi } }}$
Note: This problem needs attention on differentiation and some trigonometric identities, this kind of problem will be able to solve when the when before differentiation and after differentiation for when find x values and y values for finding the first order differential and then simple basic calculation for that arrange and substitute the value in order to find solution.
Complete step-by-step answer:
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\] \[{{\text{e}}^{\operatorname{Sin} ({x^2} + {y^2})}} = {\text{ tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x - - - - - - - - (1)\]
When \[x = 0\], then the inverse function will be zero and the values of \[x\] will be so, then we get
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}} = {\text{ tan }}\dfrac{{{y^2}}}{4}\]
Taking $\log $ on both sides,
\[ \Rightarrow \sin {y^2} = {\text{ log tan }}\dfrac{{{y^2}}}{4}\]
Hence we get,
\[y = \pm \sqrt x , \pm \sqrt {5x} ,..............\]
Now differentiating equation (1) with respect to x, we get
Let us solve separately Left hand side and Right hand side,
Now differentiate Left hand side
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\cos \left( {{x^2} + {y^2}} \right)\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right)\]
Now differentiate Right hand side
\[ \Rightarrow {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x\]
Differentiating we get,
\[ \Rightarrow \dfrac{{2y}}{4}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} + \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Now again substitute \[x = 0\] and compare,
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}}\left[ {\cos {y^2}\left( {2y\dfrac{{dy}}{{dx}}} \right)} \right] = \dfrac{y}{2}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} - - - - (2)\]
Now substitute \[x\] value and \[y\] value in equation (2), we get \[y'(0) = \dfrac{{dy}}{{dx}}\]
Now, at \[x = 0\], \[y = \sqrt \pi \] in equation in (2),
\[ \Rightarrow {{\text{e}}^{\sin {{(\sqrt \pi )}^2}}}[\cos {(\sqrt \pi )^2}2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{{{{\sqrt \pi }^2}}}{4}\dfrac{{dy}}{{dx}}\]
Now separate \[\dfrac{{dy}}{{dx}}\],
\[ \Rightarrow {{\text{e}}^{\sin \pi }}[\cos \pi ]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}}\]
We know that \[\sin \pi = 0\] and \[\cos \pi = - 1\],
\[ \Rightarrow {{\text{e}}^0}[ - 1]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{(\sec \dfrac{\pi }{4})^2}\dfrac{{dy}}{{dx}}\]
We know that \[{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}} = 2\] and \[{e^0} = 1\],
$ \Rightarrow - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2} \times 2\dfrac{{dy}}{{dx}}$
Cancelling the term $2$ in denominator and numerator,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \sqrt \pi \dfrac{{dy}}{{dx}}\]
Rearranging the terms we get,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} - \sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Taking common term same as in both terms,
$\Rightarrow$\[( - 2\sqrt \pi - \sqrt \pi )\dfrac{{dy}}{{dx}} = 0\]
Subtracting the terms we get,
$\Rightarrow$\[ - 3\sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Hence we get,
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{3\sqrt \pi }}\]
Similarly we can find for when \[x = 0,y = - \sqrt \pi \] we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt \pi }}\]
Similarly we can find for when\[x = 0,y = \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = - \dfrac{1}{{3\sqrt {5\pi } }}\]
Similarly we can find for when \[x = 0,y = - \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\]
There will be multiple answers and for this question, these are,
$\Rightarrow$$\dfrac{1}{{3\sqrt \pi }}$, $ - \dfrac{1}{{3\sqrt \pi }}$ and $ - \dfrac{1}{{3\sqrt {5\pi } }}$
$\therefore $ The correct answers are option A) $\dfrac{1}{{3\sqrt \pi }}$, B) $ - \dfrac{1}{{3\sqrt \pi }}$ and D) $ - \dfrac{1}{{3\sqrt {5\pi } }}$
Note: This problem needs attention on differentiation and some trigonometric identities, this kind of problem will be able to solve when the when before differentiation and after differentiation for when find x values and y values for finding the first order differential and then simple basic calculation for that arrange and substitute the value in order to find solution.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

What is Environment class 11 chemistry CBSE

10 examples of diffusion in everyday life

Give four adaptations shown by flowers pollinated by class 11 biology CBSE

