Answer
Verified
429.9k+ views
Hint: This problem comes under implicit function on differentiation. We need to solve separately and want to differentiate on the function and want to find y and then there will be re arranging and substitute to the equation to compare the coordinates for the solving \[y'(0) = \dfrac{{dy}}{{dx}}\] which first order differentiation and there will be multiple solvable equation and then complete step by step explanation.
Complete step-by-step answer:
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\] \[{{\text{e}}^{\operatorname{Sin} ({x^2} + {y^2})}} = {\text{ tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x - - - - - - - - (1)\]
When \[x = 0\], then the inverse function will be zero and the values of \[x\] will be so, then we get
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}} = {\text{ tan }}\dfrac{{{y^2}}}{4}\]
Taking $\log $ on both sides,
\[ \Rightarrow \sin {y^2} = {\text{ log tan }}\dfrac{{{y^2}}}{4}\]
Hence we get,
\[y = \pm \sqrt x , \pm \sqrt {5x} ,..............\]
Now differentiating equation (1) with respect to x, we get
Let us solve separately Left hand side and Right hand side,
Now differentiate Left hand side
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\cos \left( {{x^2} + {y^2}} \right)\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right)\]
Now differentiate Right hand side
\[ \Rightarrow {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x\]
Differentiating we get,
\[ \Rightarrow \dfrac{{2y}}{4}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} + \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Now again substitute \[x = 0\] and compare,
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}}\left[ {\cos {y^2}\left( {2y\dfrac{{dy}}{{dx}}} \right)} \right] = \dfrac{y}{2}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} - - - - (2)\]
Now substitute \[x\] value and \[y\] value in equation (2), we get \[y'(0) = \dfrac{{dy}}{{dx}}\]
Now, at \[x = 0\], \[y = \sqrt \pi \] in equation in (2),
\[ \Rightarrow {{\text{e}}^{\sin {{(\sqrt \pi )}^2}}}[\cos {(\sqrt \pi )^2}2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{{{{\sqrt \pi }^2}}}{4}\dfrac{{dy}}{{dx}}\]
Now separate \[\dfrac{{dy}}{{dx}}\],
\[ \Rightarrow {{\text{e}}^{\sin \pi }}[\cos \pi ]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}}\]
We know that \[\sin \pi = 0\] and \[\cos \pi = - 1\],
\[ \Rightarrow {{\text{e}}^0}[ - 1]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{(\sec \dfrac{\pi }{4})^2}\dfrac{{dy}}{{dx}}\]
We know that \[{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}} = 2\] and \[{e^0} = 1\],
$ \Rightarrow - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2} \times 2\dfrac{{dy}}{{dx}}$
Cancelling the term $2$ in denominator and numerator,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \sqrt \pi \dfrac{{dy}}{{dx}}\]
Rearranging the terms we get,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} - \sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Taking common term same as in both terms,
$\Rightarrow$\[( - 2\sqrt \pi - \sqrt \pi )\dfrac{{dy}}{{dx}} = 0\]
Subtracting the terms we get,
$\Rightarrow$\[ - 3\sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Hence we get,
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{3\sqrt \pi }}\]
Similarly we can find for when \[x = 0,y = - \sqrt \pi \] we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt \pi }}\]
Similarly we can find for when\[x = 0,y = \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = - \dfrac{1}{{3\sqrt {5\pi } }}\]
Similarly we can find for when \[x = 0,y = - \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\]
There will be multiple answers and for this question, these are,
$\Rightarrow$$\dfrac{1}{{3\sqrt \pi }}$, $ - \dfrac{1}{{3\sqrt \pi }}$ and $ - \dfrac{1}{{3\sqrt {5\pi } }}$
$\therefore $ The correct answers are option A) $\dfrac{1}{{3\sqrt \pi }}$, B) $ - \dfrac{1}{{3\sqrt \pi }}$ and D) $ - \dfrac{1}{{3\sqrt {5\pi } }}$
Note: This problem needs attention on differentiation and some trigonometric identities, this kind of problem will be able to solve when the when before differentiation and after differentiation for when find x values and y values for finding the first order differential and then simple basic calculation for that arrange and substitute the value in order to find solution.
Complete step-by-step answer:
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\] \[{{\text{e}}^{\operatorname{Sin} ({x^2} + {y^2})}} = {\text{ tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x - - - - - - - - (1)\]
When \[x = 0\], then the inverse function will be zero and the values of \[x\] will be so, then we get
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}} = {\text{ tan }}\dfrac{{{y^2}}}{4}\]
Taking $\log $ on both sides,
\[ \Rightarrow \sin {y^2} = {\text{ log tan }}\dfrac{{{y^2}}}{4}\]
Hence we get,
\[y = \pm \sqrt x , \pm \sqrt {5x} ,..............\]
Now differentiating equation (1) with respect to x, we get
Let us solve separately Left hand side and Right hand side,
Now differentiate Left hand side
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\cos \left( {{x^2} + {y^2}} \right)\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right)\]
Now differentiate Right hand side
\[ \Rightarrow {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x\]
Differentiating we get,
\[ \Rightarrow \dfrac{{2y}}{4}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} + \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Now again substitute \[x = 0\] and compare,
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}}\left[ {\cos {y^2}\left( {2y\dfrac{{dy}}{{dx}}} \right)} \right] = \dfrac{y}{2}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} - - - - (2)\]
Now substitute \[x\] value and \[y\] value in equation (2), we get \[y'(0) = \dfrac{{dy}}{{dx}}\]
Now, at \[x = 0\], \[y = \sqrt \pi \] in equation in (2),
\[ \Rightarrow {{\text{e}}^{\sin {{(\sqrt \pi )}^2}}}[\cos {(\sqrt \pi )^2}2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{{{{\sqrt \pi }^2}}}{4}\dfrac{{dy}}{{dx}}\]
Now separate \[\dfrac{{dy}}{{dx}}\],
\[ \Rightarrow {{\text{e}}^{\sin \pi }}[\cos \pi ]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}}\]
We know that \[\sin \pi = 0\] and \[\cos \pi = - 1\],
\[ \Rightarrow {{\text{e}}^0}[ - 1]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{(\sec \dfrac{\pi }{4})^2}\dfrac{{dy}}{{dx}}\]
We know that \[{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}} = 2\] and \[{e^0} = 1\],
$ \Rightarrow - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2} \times 2\dfrac{{dy}}{{dx}}$
Cancelling the term $2$ in denominator and numerator,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \sqrt \pi \dfrac{{dy}}{{dx}}\]
Rearranging the terms we get,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} - \sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Taking common term same as in both terms,
$\Rightarrow$\[( - 2\sqrt \pi - \sqrt \pi )\dfrac{{dy}}{{dx}} = 0\]
Subtracting the terms we get,
$\Rightarrow$\[ - 3\sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Hence we get,
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{3\sqrt \pi }}\]
Similarly we can find for when \[x = 0,y = - \sqrt \pi \] we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt \pi }}\]
Similarly we can find for when\[x = 0,y = \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = - \dfrac{1}{{3\sqrt {5\pi } }}\]
Similarly we can find for when \[x = 0,y = - \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\]
There will be multiple answers and for this question, these are,
$\Rightarrow$$\dfrac{1}{{3\sqrt \pi }}$, $ - \dfrac{1}{{3\sqrt \pi }}$ and $ - \dfrac{1}{{3\sqrt {5\pi } }}$
$\therefore $ The correct answers are option A) $\dfrac{1}{{3\sqrt \pi }}$, B) $ - \dfrac{1}{{3\sqrt \pi }}$ and D) $ - \dfrac{1}{{3\sqrt {5\pi } }}$
Note: This problem needs attention on differentiation and some trigonometric identities, this kind of problem will be able to solve when the when before differentiation and after differentiation for when find x values and y values for finding the first order differential and then simple basic calculation for that arrange and substitute the value in order to find solution.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell