Answer
Verified
430.2k+ views
Hint:
We are given that, ${{e}_{1}}$ and ${{e}_{2}}$ are the roots of the equation ${{x}^{2}}-ax+2=0$, where ${{e}_{1}}$ and ${{e}_{2}}$ are the eccentricities of an ellipse and hyperbola. So, here,${{e}_{1}}$ and ${{e}_{2}}$ are real. Since, it is real ${{b}^{2}}-4ac>0$. After that, apply the condition and solve it. Try it, you will get the range of $a$.
Complete step by step solution:
Now it is given that, ${{e}_{1}}$ and ${{e}_{2}}$ are the roots of the equation ${{x}^{2}}-ax+2=0$, where ${{e}_{1}}$ and ${{e}_{2}}$ are the eccentricities of an ellipse and hyperbola.
$\Rightarrow{{x}^{2}}-ax+2=0$
Here, ${{e}_{1}}$ and ${{e}_{2}}$ will be real.
So, $\Rightarrow{{b}^{2}}-4ac>0$ …………. (1)
Now comparing ${{x}^{2}}-ax+2$ with $a{{x}^{2}}+bx+c$ we get,
$\Rightarrow {a=1},$ $b=-a$, $c=2$
We get,
$\Rightarrow{{b}^{2}}-4ac={{(-a)}^{2}}-4(1)(2)$
Simplifying we get,
$\Rightarrow{{b}^{2}}-4ac={{a}^{2}}-8$ ……… (2)
From (1) and (2), we get,
$\Rightarrow{{a}^{2}}-8>0$
Now adding four on both sides we get,
$\Rightarrow{{a}^{2}}-8+8>8$
Again, simplifying we get,
$\Rightarrow{{a}^{2}}>8$
Now taking square root we get,
$\Rightarrow{a}>\sqrt{8}$ and $a<-\sqrt{8}$
Now taking, $a>\sqrt{8}$,
So, it ranges from,
$\Rightarrow \sqrt{8} < a < \infty$
For, $a<-\sqrt{8}$,
It ranges from,
$\Rightarrow - \infty < a<- \sqrt{8} $
We can write, $\sqrt{8}=2\sqrt{2}$.
Now let us check the option.
From $(3,\infty )$ not satisfied.
$(2,\infty )$ can satisfy the condition.
Also, $(1,\infty )$ do not satisfy the condition.
After that, $(-\infty ,1)\cup (1,2)$ do not satisfy the condition.
So, $a$ belongs to $(2,\infty )$.
The correct answer is option (B).
Additional information:
Quadratic Formula helps to evaluate the solution of quadratic equations replacing the factorization method. A quadratic equation is of the form of $a{{x}^{2}}+bx+c=0$, where $a,b$ and $c$ are real numbers, also called “numeric coefficients”. We know that a second-degree polynomial will have at most two zeros. Therefore, a quadratic equation will have at most two roots. By splitting the middle term, we can factorize quadratic polynomials.
Note:
1) The term ${{b}^{2}}-4ac$ in the quadratic formula is known as the discriminant of a quadratic equation. The discriminant of a quadratic equation reveals the nature of roots.
2) If the value of discriminant $=0$ i.e. ${{b}^{2}}-4ac=0$ the quadratic equation will have equal roots.
3) If the value of discriminant $<0$ i.e. ${{b}^{2}}-4ac<0$ the quadratic equation will have imaginary roots.
4) If the value of discriminant $>0$ i.e. ${{b}^{2}}-4ac>0$ then the quadratic equation will have real roots.
We are given that, ${{e}_{1}}$ and ${{e}_{2}}$ are the roots of the equation ${{x}^{2}}-ax+2=0$, where ${{e}_{1}}$ and ${{e}_{2}}$ are the eccentricities of an ellipse and hyperbola. So, here,${{e}_{1}}$ and ${{e}_{2}}$ are real. Since, it is real ${{b}^{2}}-4ac>0$. After that, apply the condition and solve it. Try it, you will get the range of $a$.
Complete step by step solution:
Now it is given that, ${{e}_{1}}$ and ${{e}_{2}}$ are the roots of the equation ${{x}^{2}}-ax+2=0$, where ${{e}_{1}}$ and ${{e}_{2}}$ are the eccentricities of an ellipse and hyperbola.
$\Rightarrow{{x}^{2}}-ax+2=0$
Here, ${{e}_{1}}$ and ${{e}_{2}}$ will be real.
So, $\Rightarrow{{b}^{2}}-4ac>0$ …………. (1)
Now comparing ${{x}^{2}}-ax+2$ with $a{{x}^{2}}+bx+c$ we get,
$\Rightarrow {a=1},$ $b=-a$, $c=2$
We get,
$\Rightarrow{{b}^{2}}-4ac={{(-a)}^{2}}-4(1)(2)$
Simplifying we get,
$\Rightarrow{{b}^{2}}-4ac={{a}^{2}}-8$ ……… (2)
From (1) and (2), we get,
$\Rightarrow{{a}^{2}}-8>0$
Now adding four on both sides we get,
$\Rightarrow{{a}^{2}}-8+8>8$
Again, simplifying we get,
$\Rightarrow{{a}^{2}}>8$
Now taking square root we get,
$\Rightarrow{a}>\sqrt{8}$ and $a<-\sqrt{8}$
Now taking, $a>\sqrt{8}$,
So, it ranges from,
$\Rightarrow \sqrt{8} < a < \infty$
For, $a<-\sqrt{8}$,
It ranges from,
$\Rightarrow - \infty < a<- \sqrt{8} $
We can write, $\sqrt{8}=2\sqrt{2}$.
Now let us check the option.
From $(3,\infty )$ not satisfied.
$(2,\infty )$ can satisfy the condition.
Also, $(1,\infty )$ do not satisfy the condition.
After that, $(-\infty ,1)\cup (1,2)$ do not satisfy the condition.
So, $a$ belongs to $(2,\infty )$.
The correct answer is option (B).
Additional information:
Quadratic Formula helps to evaluate the solution of quadratic equations replacing the factorization method. A quadratic equation is of the form of $a{{x}^{2}}+bx+c=0$, where $a,b$ and $c$ are real numbers, also called “numeric coefficients”. We know that a second-degree polynomial will have at most two zeros. Therefore, a quadratic equation will have at most two roots. By splitting the middle term, we can factorize quadratic polynomials.
Note:
1) The term ${{b}^{2}}-4ac$ in the quadratic formula is known as the discriminant of a quadratic equation. The discriminant of a quadratic equation reveals the nature of roots.
2) If the value of discriminant $=0$ i.e. ${{b}^{2}}-4ac=0$ the quadratic equation will have equal roots.
3) If the value of discriminant $<0$ i.e. ${{b}^{2}}-4ac<0$ the quadratic equation will have imaginary roots.
4) If the value of discriminant $>0$ i.e. ${{b}^{2}}-4ac>0$ then the quadratic equation will have real roots.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE