
If ${{\text{e}}_{\text{1}}}$ and ${{\text{e}}_{\text{2}}}$ are respectively, the eccentricity of a hyperbola and its conjugate. Prove that $\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = 1$
Answer
569.4k+ views
Hint: From the given question, we have to prove that the reciprocal of two eccentricities equal to $1$. Now, we have to prove this by finding the eccentricities ${{\text{e}}_{\text{1}}}$ and ${{\text{e}}_{\text{2}}}$ from the two hyperbolas and substituting in the left hand side (LHS) to get the right hand side (RHS).
The locus of a point whose distance from a fixed point bears a constant ratio, greater than one to its distance from a fixed line is called a hyperbola.
Complete step-by-step solution:
Let ${{\text{e}}_{\text{1}}}$ be the eccentricity of hyperbola \[\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1\] where \[{{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right)\] and ${{\text{e}}_{\text{2}}}$be the eccentricities of hyperbola \[\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1\] where \[{{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right)\].
Then the eccentricity of \[\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1\] where \[{{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right)\] is \[{\text{e}}_{\text{1}}^{\text{2}} = \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^{\text{2}}}}} + 1\] and the eccentricity of \[\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1\] where \[{{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right)\] is \[{\text{e}}_2^{\text{2}} = \dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} + 1\] .
Now, we are going to prove that the $\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}}$is equals to $1$
So, we have to substitute the eccentricities ${\text{e}}_{\text{1}}^{\text{2}}$ and \[\;{\text{e}}_{\text{2}}^{\text{2}}\] in the $\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}}$ to prove that the answer be equals to $1$.
$\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{1}{{\;\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} + 1}} + \dfrac{1}{{\;\dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} + 1}}$
Now take Least Common Multiple (LCM) on the denominator of right hand side (RHS). Then we get,
$\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{1}{{\;\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} + \dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}}} + \dfrac{1}{{\;\dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} + \dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}}}$
Simplifying we get,
$ \Rightarrow \dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{1}{{\;\dfrac{{{{\text{b}}^{\text{2}}} + {{\text{a}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}}} + \dfrac{1}{{\;\dfrac{{{{\text{a}}^{\text{2}}} + {{\text{b}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}}}$
Hence,
$ \Rightarrow \dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{{{{\text{a}}^{\text{2}}}}}{{\;{{\text{b}}^{\text{2}}} + {{\text{a}}^{\text{2}}}}} + \dfrac{{{{\text{b}}^{\text{2}}}}}{{\;{{\text{a}}^{\text{2}}} + {{\text{b}}^{\text{2}}}}}$
Here, we see that the denominators are same. So, we have to add up the numerators. Then we get,
$ \Rightarrow \dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{{{{\text{a}}^{\text{2}}} + {{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}} + {{\text{b}}^{\text{2}}}}}$
$ \Rightarrow \dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = 1$ .
Therefore, we proved that the $\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}}$is equals to $1$.
Thus, left hand side (LHS) = right hand side (RHS).
Hence, proved the required result.
Note: We have mind that, The standard equation of the hyperbola is \[\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1\] where, \[{{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right)\] .
Also, let ${{\text{e}}_{\text{1}}}$ be the eccentricity of hyperbola \[\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1\] where, \[{{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right)\] .
Now, we are going to get the eccentricity ${{\text{e}}_{\text{1}}}$ from the term \[{{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right)\]
\[ \Rightarrow \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^{\text{2}}}}} = \left( {{\text{e}}_{\text{1}}^{\text{2}} - 1} \right)\]
Rearranging the terms,
\[ \Rightarrow {\text{e}}_{\text{1}}^{\text{2}} = \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^{\text{2}}}}} + 1\]
Hence,
$ \Rightarrow {{\text{e}}_{\text{1}}} = \sqrt {1 + \dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} $
If the transverse axis along the y-axis and the conjugate axis is along x-axis, then the equation of the hyperbola \[\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1\] where \[{{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right)\] .
Let ${{\text{e}}_{\text{2}}}$ be the eccentricities of hyperbola \[\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1\] where \[{{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right)\] .
Now, we are going to get ${{\text{e}}_{\text{2}}}$ from the term \[{{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right)\] .
\[ \Rightarrow \dfrac{{{{\text{a}}^2}}}{{{{\text{b}}^{\text{2}}}}} = \left( {{\text{e}}_2^{\text{2}} - 1} \right)\]
Rearranging the terms we get,
\[ \Rightarrow {\text{e}}_2^{\text{2}} = \dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} + 1\]
Hence,
$ \Rightarrow {{\text{e}}_2} = \sqrt {1 + \dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}} $
Let \[\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1\] and \[\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1\] be the two hyperbola conjugate to each other.
The locus of a point whose distance from a fixed point bears a constant ratio, greater than one to its distance from a fixed line is called a hyperbola.
Complete step-by-step solution:
Let ${{\text{e}}_{\text{1}}}$ be the eccentricity of hyperbola \[\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1\] where \[{{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right)\] and ${{\text{e}}_{\text{2}}}$be the eccentricities of hyperbola \[\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1\] where \[{{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right)\].
Then the eccentricity of \[\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1\] where \[{{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right)\] is \[{\text{e}}_{\text{1}}^{\text{2}} = \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^{\text{2}}}}} + 1\] and the eccentricity of \[\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1\] where \[{{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right)\] is \[{\text{e}}_2^{\text{2}} = \dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} + 1\] .
Now, we are going to prove that the $\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}}$is equals to $1$
So, we have to substitute the eccentricities ${\text{e}}_{\text{1}}^{\text{2}}$ and \[\;{\text{e}}_{\text{2}}^{\text{2}}\] in the $\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}}$ to prove that the answer be equals to $1$.
$\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{1}{{\;\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} + 1}} + \dfrac{1}{{\;\dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} + 1}}$
Now take Least Common Multiple (LCM) on the denominator of right hand side (RHS). Then we get,
$\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{1}{{\;\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} + \dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}}} + \dfrac{1}{{\;\dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} + \dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}}}$
Simplifying we get,
$ \Rightarrow \dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{1}{{\;\dfrac{{{{\text{b}}^{\text{2}}} + {{\text{a}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}}} + \dfrac{1}{{\;\dfrac{{{{\text{a}}^{\text{2}}} + {{\text{b}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}}}$
Hence,
$ \Rightarrow \dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{{{{\text{a}}^{\text{2}}}}}{{\;{{\text{b}}^{\text{2}}} + {{\text{a}}^{\text{2}}}}} + \dfrac{{{{\text{b}}^{\text{2}}}}}{{\;{{\text{a}}^{\text{2}}} + {{\text{b}}^{\text{2}}}}}$
Here, we see that the denominators are same. So, we have to add up the numerators. Then we get,
$ \Rightarrow \dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{{{{\text{a}}^{\text{2}}} + {{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}} + {{\text{b}}^{\text{2}}}}}$
$ \Rightarrow \dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = 1$ .
Therefore, we proved that the $\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}}$is equals to $1$.
Thus, left hand side (LHS) = right hand side (RHS).
Hence, proved the required result.
Note: We have mind that, The standard equation of the hyperbola is \[\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1\] where, \[{{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right)\] .
Also, let ${{\text{e}}_{\text{1}}}$ be the eccentricity of hyperbola \[\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1\] where, \[{{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right)\] .
Now, we are going to get the eccentricity ${{\text{e}}_{\text{1}}}$ from the term \[{{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right)\]
\[ \Rightarrow \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^{\text{2}}}}} = \left( {{\text{e}}_{\text{1}}^{\text{2}} - 1} \right)\]
Rearranging the terms,
\[ \Rightarrow {\text{e}}_{\text{1}}^{\text{2}} = \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^{\text{2}}}}} + 1\]
Hence,
$ \Rightarrow {{\text{e}}_{\text{1}}} = \sqrt {1 + \dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} $
If the transverse axis along the y-axis and the conjugate axis is along x-axis, then the equation of the hyperbola \[\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1\] where \[{{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right)\] .
Let ${{\text{e}}_{\text{2}}}$ be the eccentricities of hyperbola \[\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1\] where \[{{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right)\] .
Now, we are going to get ${{\text{e}}_{\text{2}}}$ from the term \[{{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right)\] .
\[ \Rightarrow \dfrac{{{{\text{a}}^2}}}{{{{\text{b}}^{\text{2}}}}} = \left( {{\text{e}}_2^{\text{2}} - 1} \right)\]
Rearranging the terms we get,
\[ \Rightarrow {\text{e}}_2^{\text{2}} = \dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} + 1\]
Hence,
$ \Rightarrow {{\text{e}}_2} = \sqrt {1 + \dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}} $
Let \[\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1\] and \[\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1\] be the two hyperbola conjugate to each other.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

